
PSCG

Ron Munitz

Founder & CEO - The PSCG
ron@thepscg.com

Android Builders
Summit
March 2015

@ronubo

Building a General Purpose
Android Workstation

This work is licensed under the Creative Commons
Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/4.0/

© Copyright Ron Munitz 2015

PSCG

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

about://Ron Munitz
● Founder and CEO of the PSCG

○ The Premium Embedded/Android consulting and Training firm
● Founder and (former) CTO of Nubo Software

○ The first Remote Android Workspace
● Instructor at NewCircle
● Senior Lecturer at Afeka College of Engineering
● Working on an awesome stealth startup
● Building up on diverse engineering experience:

○ Distributed Fault Tolerant Avionic Systems
○ Highly distributed video routers
○ Real Time, Embedded, Server bringups
○ Operating Systems, very esoteric libraries, 0’s, 1’s and lots of them.

■ Linux, Android ,VxWorks, Windows, iOS, devices, BSPs, DSPs,...

PSCG

Disclaimer

This talk will include building/flashing[dd-ing]
/modifying/rebooting/testing/running.

● Some of those things may take some time.
● Some of those things may not be visible [depending on

HDMI/External VGA on boot time)

Please do use that time for questions.

Agenda

● Demo [yes, that comes first]
○ TL;DR what makes Android an Android
○ End of day lecture -see if you want to leave or bring

all your friends.
● Android and X86 - History.

○ Theory, what makes Android and Android
○ Challenges in transforming an Android into a GP

platform
○ Approaches to porting complexities

● Break and laptop restart back to Linux
○ How stuff work - Code walkthrough.

PSCG

PART I - Theory, Motivation

PSCG

TL, (Do Read);

PSCG

Theorem of Android Execution

∀ (Android Build Systems, boot methods, virtualization
 mechanisms, hardware, startup mechanisms) ,
∃ (A reasonable and straightforward explanation
 that makes them all behave quite the same)

** I have a truly marvellous proof of this, which this margin
 is too narrow to contain - so from now and on everything
 is going to be really simple.

PSCG

What makes Android an Android

Let’s make things as simple as possible,
and then over-simplify them

 (and then also explain in detail…..)

PSCG

What makes Android an Android

● Over-simplified Android is:
○ ANDROID-ized kernel
○ Androidized /init (in some Androidized ramdisk)

● Without being too much of a smart@$$, this
is the bare truth (@see next slide)

PSCG

Justifying the over-simplification

● Mount rootfs with whatever modules you
may need
○ can also just be the ramdisk

● Mount additional partitions with whatever
you may need
○ /system et. al (zygote, linkers, hals, binaries, pretty

much everything.)

PSCG

So in other words

● It really doesn’t matter what you do before
you run init

● The important thing, is that you run init
● can also just be the ramdisk
● Mount additional partitions with whatever

you may need
○ /system et. al (zygote, linkers, hals, binaries, pretty

much everything.)

PSCG

What comes next

We’re going to:
● Take the last couple of slides
● Explain them in greater detail
● Select a system that implements it
● Explain it
● Dissect it

PSCG

Android Partition Layout

PSCG

Android ROM components
Traditional terminology – whatever lies on the read-only partitions of the
device's internal flash memory:

● Recovery Mode:
○ Recovery Image (kernel + initrd)

● Operational Mode:
○ Boot Image (kernel + initrd)
○ System Image

● The magical link between the two:
○ Misc

What is not a part of the ROM?

● User data: /data, /cache, /mnt/sdcard/...

PSCG

Android ROM storage layout

Since Android is Linux at its core, we can examine its
storage layout via common Linux tools:
shell@android:/ $ df

Filesystem Size Used Free Blksize

/dev 487M 32K 487M 4096

/mnt/secure 487M 0K 487M 4096

/mnt/asec 487M 0K 487M 4096

/mnt/obb 487M 0K 487M 4096

/system 639M 464M 174M 4096

/cache 436M 7M 428M 4096

/data 5G 2G 3G 4096

/mnt/shell/emulated 5G 2G 3G 4096

PSCG

Android ROM storage layout -
Standard Linux

shell@android:/ $ mount
rootfs / rootfs ro,relatime 0 0

tmpfs /dev tmpfs rw,nosuid,relatime,mode=755 0 0

devpts /dev/pts devpts rw,relatime,mode=600 0 0

proc /proc proc rw,relatime 0 0

sysfs /sys sysfs rw,relatime 0 0

debugfs /sys/kernel/debug debugfs rw,relatime 0 0

Output of mount continues in next slide

PSCG

Android ROM storage layout:
Standard Android
none /acct cgroup rw,relatime,cpuacct 0 0
tmpfs /mnt/secure tmpfs rw,relatime,mode=700 0 0
tmpfs /mnt/asec tmpfs rw,relatime,mode=755,gid=1000 0 0
tmpfs /mnt/obb tmpfs rw,relatime,mode=755,gid=1000 0 0
none /dev/cpuctl cgroup rw,relatime,cpu 0 0
/dev/block/platform/sdhci-tegra.3/by-name/APP /system ext4 ro,relatime,user_xattr,acl,barrier=1,
data=ordered 0 0
/dev/block/platform/sdhci-tegra.3/by-name/CAC /cache ext4 rw,nosuid,nodev,noatime,errors=panic,
user_xattr,acl,barrier=1,nomblk_io_submit,data=ordered,discard 0 0
/dev/block/platform/sdhci-tegra.3/by-name/UDA /data ext4 rw,nosuid,nodev,noatime,errors=panic,
user_xattr,acl,barrier=1,nomblk_io_submit,data=ordered,discard 0 0
/dev/fuse /mnt/shell/emulated fuse rw, nosuid, nodev, relatime,user_id=1023,group_id=1023,
default_permissions,allow_other 0 0

PSCG

Android ROM storage layout
shell@android:/ $ cat /proc/partitions

 major minor #blocks name

 179 0 7467008 mmcblk0

 179 1 12288 mmcblk0p1

 179 2 8192 mmcblk0p2

 179 3 665600 mmcblk0p3

 179 4 453632 mmcblk0p4

 179 5 512 mmcblk0p5

 179 6 10240 mmcblk0p6

 179 7 5120 mmcblk0p7

 179 8 512 mmcblk0p8

 179 9 6302720 mmcblk0p9

PSCG

Mapping blocks devices to
ROM functionalities
Some BSP’s are kind enough to provide a mapping between the mapped
partitions, and their purpose.
An example of an Nvidia Tegra based SoC follows:

shell@android:/ $ ls -l /dev/block/platform/sdhci-tegra.3/by-name/
lrwxrwxrwx root root 2013-02-06 03:54 APP -> /dev/block/mmcblk0p3
lrwxrwxrwx root root 2013-02-06 03:54 CAC -> /dev/block/mmcblk0p4
lrwxrwxrwx root root 2013-02-06 03:54 LNX -> /dev/block/mmcblk0p2
lrwxrwxrwx root root 2013-02-06 03:54 MDA -> /dev/block/mmcblk0p8
lrwxrwxrwx root root 2013-02-06 03:54 MSC -> /dev/block/mmcblk0p5
lrwxrwxrwx root root 2013-02-06 03:54 PER -> /dev/block/mmcblk0p7
lrwxrwxrwx root root 2013-02-06 03:54 SOS -> /dev/block/mmcblk0p1
lrwxrwxrwx root root 2013-02-06 03:54 UDA -> /dev/block/mmcblk0p9
lrwxrwxrwx root root 2013-02-06 03:54 USP -> /dev/block/mmcblk0p6

Legend: APP is system, SOS is recovery, UDA is for data...

PSCG

Why should we care about it?!

For a couple of reasons:
● Backup
● Recovery
● Software updates
● Error checking
● Board design
● Curiosity
● ...
● Because up Android for a workstation is really just

building an Android device!

PSCG

X86 Android Projects

PSCG

Android Projects

Various forks to the Android Open Source Project:
● AOSP

○ The root of all (good?)
● Android-X86
● Android-IA
● CyanogenMod

○ Need to raise funds? Ask them how…
● And many others. Not all are known or open

sourced.

PSCG

Android Projects

Since most workstations are running X86, we
will concentrate on the X86 architecture (that
includes 64 bit of course)

The same techniques can be easily applied to
any ARM/MIPS/* based machine.

PSCG

Android and X86

X86 ROMs (by chronological order):
● Android-X86 (Debut date: 2009)

○ http://android-x86.org
● Emulator-x86 (Debut date: 2011)

○ http://source.android.com
● Android-IA (Debut date: 2012)

○ https://01.org/android-ia

PSCG

AOSP
The common reference, having the most recent version of the Android platform
(Userspace) versions.
Provides the QEMU based Android Emulator:
+ Works on any hosted OS
+ Supports multiple architectures

- But slow on non X86 ones
- Performs terribly if virtualized
 +/- Advances in nested virtualization help
- Has no installer for X86 devices
- Older kernel
+ Lollipop now provides a QEMU based target. This should help in
 porting
+/- An emulator. For better and for worse.

PSCG

Android-X86
+ Developed by the open source community

+ Developer/Linux user friendly

+ Multi-Boot friendly
+ Supports legacy boot and UEFI

+ Generally supports many Intel and AMD devices

+/- But of course requires specific work on specific HW

+ VM friendly

+ Mature, Recognized and stable

 - Delays in new releases (You can help!)
 - Latest version (5.0) is still a bit buggy
 ? Any MESA developers here?

PSCG

Android-IA
+ Installer to device

+ Relatively new versions of android and kernel
+ Works great on some Intel devices
- Development for devices based on intel solutions only
- Very unfriendly to other, non Windows 8/10/? OS's
- Not developer friendly – unless they make it such
- Community work can be better.
+ Unknown roadmap:
 + Made impressive progress in early 2013
 - But suspended development at Android 4.2.2 for months!
 + Back on track in April 2014
 - And then again - no Lollipop support for non MinnowBoard’s.
 ? Any Intel OTC guys here?

PSCG

Android is Linux

● Android is Linux
○ Therefore the required minimum to run it would be:

■ A Kernel
■ A filesystem
■ A ramdisk/initrd... Whatever makes you happy with your kernel's

init/main.c's run_init_process() calls.
See http://lxr.linux.no/linux+v3.6.9/init/main.c

○ This means that we can achieve full functionality with
■ A kernel (+ramdisk)
■ A rootfs where Android system/ will be mounted (ROM)
■ Some place to read/write data

PSCG

Android IA is Android
Android-IA is, of course, Linux as well.
However, it was designed to conform to Android OEM's partition layout, and
has no less than 9 partitions:

○ boot - flashed boot.img (kernel+ramdisk.img)
○ recovery - Recovery image
○ misc - shared storage between boot and recovery
○ system - flashed system.img - contents of the System partition
○ cache - cache partition
○ data - data partition
○ install - Installation definition
○ bootloader - A vfat partition containing android syslinux bootloader (<4.2.2)

 - A GPT partition containing gummiboot (Only option in 4.2.2)
○ fastboot - fastboot protocol (flashed droidboot.img)

Note: Since android-ia-4.2.2-r1, the bootable live.img works with a single partition,
enforcing EFI. It still has its issues - but it is getting there.

PSCG

Android-IA boot process

● Start bootloader (e.g. EFI gummiboot)
● The bootloader starts the combined kernel + ramdisk

image (boot.img flashed to /boot)
● At the end of kernel initialization Android's
● /init runs from ramdisk
● File systems are mounted the Android way – using

fstab.common that is processed (mount_all command)
from in init.<target>.rc

PSCG

Android-X86 is Linux
● One partition with two directories

○ First directory – grub (bootloader)

○ Second directory – files of android (SRC)

■ kernel

■ initrd.img

■ ramdisk.img

○ system

○ data

● This simple structure makes it very easy to work and debug

 Note: Also comes with a live CD/installer, and iso/efi bootable.

 Very convenient.

PSCG

Android-X86 boot process

● Start bootloader (GRUB)
● bootloader starts kernel + initrd (minimal linux) + kernel

command line
● At the end of kernel initialization

○ run the /init script from initrd.img
○ load some modules, etc.
○ At the end change root to the Android file system

● Run the /init binary from ramdisk.img
○ Which parses init.rc, and starts talking “Android-ish”

We will examine Android-X86’s /init after the break

PSCG

Android-X86 vs. Android-IA :
Which one is better?

It depends what you need:
○ Developer options?
○ Debugging the init process?
○ Support for Hardware?
○ Support for OTA?
○ Licensing?
○ Participating in project direction?
○ Upstream features?
○ ...

There is no Black and White.

PSCG

An hybrid approach
● Use Android-X86 installer system
● And put your desired android files (matching

kernel/ramdisk/system) in the same partition.
● Use the Android-X86 chroot mechanism

○ Critics: Does redundant stuff
○ But that's just a hack anyway – devise specific solutions for

specific problems
● This way, we can multiple boot various projects:

○ Android-IA
○ AOSP
○ Any other OS...

■ On Multi-OS containers… See future talk.
Note: You can also use chroot mechanism on any Linux Distribution,
from userspace! But this is significantly harder...

PSCG

Booting your system

● Operating Systems do not start themselves.
○ Please don’t start a “what is an OS” discussion

● Kernels do not start themselves
○ Please don’t start a “what is a Kernel” discussion…

● Bootloaders, however do start them. Let’s see how:
○ With Legacy GRUB

■ Android-X86’s default.
■ Doesn’t support UEFI/GPT

○ With GRUB 2
■ “hopefully” your bootloader (it’s a Linux

conference after all)
■ Supports whatever has to be supported.

Note: It’s really not about the bootloaders themselves. They are merely
discussed as an example.

PSCG

3 strikes for Android-IA

● You can’t really tell what is going on and when to expect
stuff

● Too much proprietary stuff going on (more details later)
● The Lollipop version only supports MinnowBoard

○ With all the respect… that is very disappointing.

⇒ Rest of the talk will concentrate on Android-X86.

PSCG

Android Multi-Booting

PSCG

Legacy GRUB multi-boot recipe
(simplified)
Repartition existing Linux partition (Don't do that...)
Install Android-X86
Add entries to GRUB
Reboot to Android-X86 debug mode
Copy Android-IA files from a pendrive or over SCP

For the former: cp /mnt/USB/A-IA/ /mnt && sync
/mnt is the root of Android-X86 installed partition
(e.g. (hd0,1)/...

Update GRUB entries and update GRUB
Voila :-)
Less simplified procedure: Debug GRUB... :-(
** Note: Replace Android-IA with AOSP to boot AOSP built files (system.img /
kernel / ramdisk.img) on your target device.

PSCG

Legacy GRUB multi-boot recipe
(simplified)
● Repartition existing Linux partition (Don't do that...)
● Create a mount point for your multi-booting android

○ Can make a partition per distribution, it doesn't really matter.
○ For this example let's assume all Android distributions will co exist on the same

partition, and that it is mounted to /media/Android-x86
● Build your images

○ AOSP: Discussed before
○ Android-x86:

■ . build/envsetup.sh && lunch android_x86-<variant> \
&& make iso_img # OR make efi_img

○ Android-IA: replace bigcore with ivy/sandy/who knows when intel will support
bayrail et al...
■ . build/envsetup.sh && lunch core_mesa-<variant> \

 && make allimages
■ . build/envsetup.sh && lunch bigcore-<variant> && make allimages

** <variant> is either one of the following: user, userdebug, eng

PSCG

Legacy GRUB multi-boot recipe
(simplified)
● Create directories for your projects (e.g. jb-x86, A-IA, AOSP) under your

mount point (e.g. /media/Android-x86)
● From Android-X86's out/product/target: Copy initrd.img to all projects.

○ Can of course only copy ramdisk to one location.
● From all projects – copy kernel, ramdisk.img, system/ and data/ to to

the corresponding directory under your mount point.
● Add entries to GRUB and update grub.

● # e.g. sudo vi /etc/grub.d/40_custom && update-grub

PSCG

Multi-boot recipe with GRUB2 -
A “numerical” example
$ df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda5 451656948 394848292 34199920 93% /

udev 1954628 4 1954624 1% /dev

tmpfs 785388 1072 784316 1% /run

none 5120 0 5120 0% /run/lock

none 1963460 2628 1960832 1% /run/shm

/dev/sda1 15481360 5165416 9529464 36% /media/Android-
x86

PSCG

A “numerical” example (cont.) -
/etc/grub.d/40_custom
JB-X86
menuentry 'jb-x86' --class ubuntu --class gnu-linux --class gnu --class os {
recordfail
insmod gzio
insmod part_msdos
insmod ext2
set root='(hd0,msdos1)'
echo 'Loading Android-X86'
linux /jb-x86/kernel quiet androidboot.hardware=android_x86 video=-16 SRC=/jb-x86
initrd /jb-x86/initrd.img
}

PSCG

A “numerical” example (cont.) -
/etc/grub.d/40_custom
android-IA

menuentry 'Android-IA' --class ubuntu --class gnu-linux --class gnu --class os {

recordfail

insmod gzio

insmod part_msdos

insmod ext2

set root='(hd0,msdos1)'

echo 'Loading Android-IA'

linux /A-IA/kernel console=ttyS0 pci=noearly console=tty0 loglevel=8 androidboot.hardware=ivb
SRC=/A-IA

initrd /A-IA/initrd.img

}

PSCG

Cloud bringup techniques

● The same technique would work also for bringing up
Android on any cloud provider or VM.

● An example (taken from my 2014 sessions at the MWC
and AnDevCon follows in the next slide)
○ Temporarily available in http://thepscg.com/talks was too short in time

to provide a link, but if you stayed so far it might interest you...

PSCG

http://thepscg.com/talks

Using Android from within Linux

● A couple of excellent options for the non-virtualized
Host (assuming Intel VT/AMD-V and the likes)
○ The AOSP X86 emulator/AOSP on a Virtual Machine
○ Android-X86 on a Virtual Machine
○ Android-IA on a Virtual Machine

● Problem: Can’t run a VM within a VM!
● There are two elegant solutions for this problem…

○ Nested Virtualization
○ chroot-ing

PSCG

Android on AWS (teaser)
● AWS Cloudroid recipe:

○ Choose “Local” server with HW characteristics similar to the target VM
○ Bring up Android-X86 on XEN

■ You can use other distributions too for the chroot part
■ In fact - in many of my projects I use the AOSP

○ Create an AMI out of that Android-X86 instance
○ Set up a new AWS instance with that AMI

● Sounds simple, right?
○ Well, it’s not. If you are up for the challenge, I would definitely

recommend hiring a top-notch, competent Linux bringup superstar.
● There is a a bit simpler alternative...

PSCG

So, what is it good for?

● Assuming you have Android running on your
device.
○

● With Fully fledged command line tools
○ e.g. crosstool-ng to build gcc etc. etc.

● You can use Linux Containers / Hypervisors
to multi-use OS’s:

i. OS 1 / Display Protocol Server 1
ii. OS 2 / Display Protocol Server 2
iii. OS 3 / native apps for OS 3
iv. OS 3 / Display protocol clients for other OS’s...

PSCG

Releasing an Android from a chroot jail
in two quick steps:

 1. Run “Standard” Linux
 2. chroot <Android ramdisk.img> <Android’s /init>

That’s pretty much the same thing Android-X86 does
on its init.

The problem here is who owns the display… On a
server, it is actually very elegant and allows multi-
Android instance scaling (If you have a display
protocol…)

PSCG

Motivation

● Goal: Run Android anywhere. In particular -
where a GPOS would usually run.

● Problem: How do you handle the porting
complexities?

● Solution: Extend the work of others

PSCG

CVM (Collaborative VM)

 A N D R O I D

Linux

Windows
RDP
client

Remote
<whatever>

VT/console(s)

X11
client

VNC
client

whtvr
client

HOME

Browser

App 1

App2

PSCG

PART II - Technical, Operation

PSCG

Command Line
Android/Linux Capabilities

PSCG

Command Line Linux

● Android does not provide a terminal
emulator as we know it.

● Neither does it provide binary compatibility
due to ABI differences, libc differences
○ Can be worked around by recompiling
○ Or with providing glibc and LD_PRELOAD-ing

● In the next couple of slides we will see
approaches to enabling our favorite terminal
work.

PSCG

Command line Linux approaches

● Via VT
○ Enable VT’s + key bindings

● Via terminal emulator apps
○ Modify framework to support split windows

■ There has been support in the AOSP since
KitKat.

■ Modify code to run as a (bound) service:
● Think of onPause(), onStop(),...
● Think of Linux without nohup …

● VT primer follows
○ Can be skipped for ELC
○ Can be bullet-speed presented in ABS

PSCG

Virtual Terminals

● A virtual console (VC), also known as a virtual
terminal (VT), is a conceptual combination of the
keyboard and display for a computer user interface.
(Source: Wikipedia)

● Usually in Linux, the first 6 virtual consoles provide a
text terminal with a login prompt. The graphical X
Window System starts in the 7th virtual console. You
can have up to 63 such terminals.

● But Android is not exactly linux. There is No X!
○ Surface Flinger is the graphic architecture.
○ No support for VT's in "vanilla" Android
○ Frame buffers are used as in Linux.

■ Depending on HW… In our case they are.

PSCG

Virtual Terminals

● The keyboard shortcuts Alt+Fx and Crtl+Alt+Fx are
implemented in kernel.

● Switching VT's using the keyboard shortcuts is
supported upon explicitly setting permissions

● So the trivial solution would be just to call these
ioctl's on the Surface flinger initialization service
○ @see

frameworks/native/services/surfaceflinger/DisplayHardware/Displ
ayDevice.cpp

○ @see Android-X86
commit 640221175d9957b5d5bcddc83b4726a4da057cdd

○

PSCG

Virtual Terminals

● Well that is simple in Theory.
○ In real life, nothing works at first shot...

● Problem: simultaneous display of android
applications and text messages from terminal.

● Root Cause: You have video driver for terminal
works well and your graphic console is tty1.

● Fix:
○ Disable video driver of terminal (quite

extremist...)
○ Use in another terminal for graphics (i.e. good

old tty7

PSCG

Virtual Terminals - legend

● Nodes:
○ /dev/tty – current terminal (like Xterm or virtual

terminal)
○ /dev/tty0 – current virtual terminal

● Commands:
○ openvt – open virtual terminal
○ chvt – switch to another virtual terminal

■ Do try this at home (sudo chvt 1 / chvt 7 in
your Linux distro)

Now see Android-X86 /init script to see how virtual
consoles are eventually set (mknod /dev/tty , openvt)
(@see bootable/newinstaller/initrd/init)

PSCG

Desktop /Laptop /
Workstation Hardware

Capabilities

PSCG

Making HW/HAL’s work

Desktop alternatives

● Now that you have your Android, you need
to be able to expose hardware to it.

● This can be done in the exact same way as
in any other Android Bringup
○ e.g. overlays/HAL device registration/<have-

feature> tags, etc.
● But it really doesn’t have to. Most of the

components are already supported by the
framework.
○ Except for the HAL’s...

PSCG

Desktop/laptop BLOBs

● A reasonable set of Android-X86 supported
hardware is listed below
○ Network (wireless, wire) - kernel + UCode firmware
○ Graphics
○ Audio
○ Extension cards via USB/PCI* (e.g. cellular modem)
○ Keyboard / Pointer device
○ More pointer devices [e.g. touchpad].
○ …

● Making some work is easy. Making others
work is… Less easy.

PSCG

Desktop/laptop HW handling

● We’ll start with the ones that are usually
easier:
○ Extension cards via USB/PCI* (e.g. cellular modem)

■ Kernel responsibility to announce hotplug
devices

■ add to ueventd if necessary
○ Keyboard / Pointer device

■ Enable relevant drivers in kernel, use the
inputattach framework, add .kl if necessary

○ More pointer devices [e.g. touchpad].
■ Enable relevant drivers in kernel - add .idc if

necessary

PSCG

Desktop/laptop HW handling -
Network

● Network - Ethernet:
○ Configure your device in the kernel

■ e.g. CONFIG_E1000…
● Network - Wireless:

○ Configure your device in the kernel
○ And make sure the firmware for it is available under

/lib/firmware/
■ e.g. /lib/firmware<your_blob>.ucode for the intel

drivers

PSCG

Graphical Android
Capabilities

PSCG

Desktop/laptop HW handling -
Graphics

● Graphics
○ Problem. Hardware acceleration
○ “Solution”: Use MESA for the GPU hal

● Unfortunately MESA does not support all
chipsets. “noveau” is traditionally
experimental, “PowerVR” is not supported -
so if you don’t have support from the
manufacturers - you’re in problem

● Also, newer Open GLES versions may need
a porting of MESA

● Best shot: Use i915/965 intel based
chipsets.

PSCG

Server/VM graphics

● Graphics:
○ Problem: Hardware acceleration
○ Another Problem: No GPU at all
○ Another problem: Graphics in a VM

● These are all really instances of the same
problem.

● Solution: In the next slide.

PSCG

Server VM/Graphics.

● If you want to use Graphic Acceleration - you
must have the mechanisms.

● This is a very painful issue in virtualization
● To workaround it:

○ Implement drivers that support OpenGL ES 2.0/3.0
for Android.

○ Add offloading of OpenGL to host.
■ Not always possible.
■ See AOSP emulator and Genymotion

○ Add kernel flag 'qemu=1' and disable Hardware
Acceleration, use software implementation instead

PSCG

Android Emulator and Graphics

● As a GPU-less virtual machine, the Android
emulator suffers the same problems, and
offers two types of solutions:
○ Software Implementation (libGLES_android.so)

■ frameworks/native/opengl/libagl
○ Target → Host GL commands translation:

■ external/qemu/distrib/android-emugl (not part of
the default manifest in Lollipop!)

○ @see frameworks/native/opengl/libs/EGL/Loader,
@see Loader::load_driver(...)

PSCG

Androidizing your Android

PSCG

Androidizing your Android

● Making your device “Google”
○ Seriously, WTH happened to goo.im ?!
○ TL;DR: get the right versions and push to the right

places. (/system/app , system/priv-app/, … (
● Insisting to run ARM apps on סn x86* arch

○ If the Android emulator can do it
○ So can we.
○ How?
○ User mode qemu.
○ Reference: Bluestacks, Intel’s libhoudini.

PSCG

ARMing your Android

● FIrst of all: This should not really be relevant
to almost anyone.
○ If someone doesn’t APP_ABI := <your arch> - they

are probably not worth the install…
○ Yes, there are “legacy” excuses.
○ There are also HW excuses
○ Bottom line is that this is not perfect.
○ But if you still want to use it...

PSCG

ARMing your Android - usermode
QEMU

● Theory of operation:
○ Whenever an .so is dlopen()-ed
○ If it has an arm* ABI - use another dynamic loader
○ The other dynamic loader is essentially a user-mode

QEMU translator

PSCG

ARMing your Android - usermode
QEMU

● Challenges:
○ Modify the dynamic loader code (patch

@libnativehelper, art, dalvik)
○ Get the QEMU user-mode blobs (.so’s).

■ And here comes the infamous proprietary blobs
problem..

PSCG

ARMing your Android

● Some companies have done tremendous
work on integrating QEMU user-mode within
X86 Android instances

● And have shipped devices that enable dual
(or triple) architecture

● But have not open sourced it...

PSCG

ARMing your Android

● Fighting against closed-source blobs:
“If you can’t win them - rip them”:
○ Root the phone [“when there is a will - there is

(usually) a way”]
○ Get the relevant .so’s
○ push them wherever they have to be pushed

● This works for Android HAL blobs (@see
about everything in XDA developers, @see
how CyanogenMod “brunches”)

● Works for Google’s GLES pipe translator
● And this works for the user-mode qemu

blobs as well.

PSCG

ARMing your Android

● This works for Android HAL blobs
○ @see about everything in XDA developers
○ @see how CyanogenMod “brunches”

● This works for Google’s Android Emulator
Open GLES configurations (SW
emulation/host translation)
○ Not ripped as it’s open source. But definitely

“pushed” using the build

● And this also works for the user-mode qemu
blobs as well.

PSCG

Thank You

PSCG

Questions/Consulting/Training requests:
 ron@thepscg.com

https://twitter.com/ronubo
http://www.linkedin.com/in/ronmunitz
https://google.com/+RonMunitz

