
Compressed Swap for Embedded Linux

Alexander Belyakov, Intel Corp.



2

Outline.

1. Motivation

2. Underlying media types

3. Related works

4. MTD compression layer
• driver place in kernel architecture
• swap-in/out data flow

5. Performance expectations

6. User-mode performance
• PCM
• NAND
• RAM

7. Conclusion



3

Motivation

Memory requirements in embedded world constantly grow
Most of embedded systems has both DRAM and flash memory

Compress swapped pages
and store them to the flash.

More virtual memory available for applications
More memory available for file-cache
Power consumption is getting lower
Entire design becomes cheaper
Virtual memory subsystem becomes more healthy

Performance degradation
Erase cycles
Wear out issues



4

Underlying media types

1. NAND
required explicit erase
bad blocks
wear out/leveling issues
increased software complexity

2. PCM (phase change memory)
bit alterable writes
cycling endurance
performance

3. RAM
high performance
no hardware changes
extra virtual memory



5

Related works

hardware compressor/decompressor
• B. Tremaine, et al., “IBM memory expansion technology”

swap caching and compression
• T. Cortes, et al., “Improving Application Performance through Swap 

Compression”

compressed swap in RAM (embedded)
• Lei Yang, et al., “CRAMES: Compresses RAM for Embedded Systems”
• Compressed Caching for Linux, http://code.google.com/p/compcache/

compressed swap on NAND (embedded)
• Sangduck Park, et al., “Compressed Swapping for NAND Flash Memory 

Based Embedded Systems”



6

MTD Compression Layer (prototype)

RAM

MTD

FLASH

swap subsystem (VM)

MTDCOMPR
(ZLIB)

New!

MTDBLOCK IF

WRITESECT()
READSECT()

MTDCOMPR->WRITE()
MTDCOMPR->READ()

MTD->WRITE()
MTD->READ()
MTD->ERASE()

MEMCPY()



7

MTDCOMPR swap-out data flow
Write request

(buffer, external offset)

Fill input buffer
(page size)

Invalidate existing on-media data
(update free space list)

Compress the data

Select the largest free on-media chunk
from in-memory list

Write compressed data (with headers)
splitting between free chunks if necessary

Update free space list

Store external-internal offset correspondence
within in-memory tree

Return with success



8

MTDCOMPR swap-in data flow

Read request
(buffer, external offset)

Find corresponding internal offset
by external offset

Read data chain from the media

Decompress the data

Return with success
until buffer is empty



9

Performance expectations (flash)

memory
in use

memory access
speed

RAM size

RAM only
RAM + compressed SWAP on FLASH

FLASH size

RAM access
speed

swap access
speed

Out of memory



10

0

1

10

100

1000

0 16 32 48 64 80

Memory in use, Mbytes

Pe
rf

or
m

an
ce

, %

fixed reads random reads last reads

52%

User-mode performance 
(PXA271, 32MB RAM, 16MB NAND)



11

0

1

10

100

1000

0 16 32 48 64 80

Memory in use, Mbytes

Pe
rf

or
m

an
ce

, %

fixed reads random reads last reads

80%

User-mode performance 
(PXA271, 32MB RAM, 16MB PCM)



12

Conclusion

32MB
RAM

16MB
PCM

80MB
virtual memoryZLIB1

MTDCOMPR

perf: 100% perf: 80%

• MTDCOMPR key features:
increase virtual memory
moderate performance impact
relatively simple

• Media types:
PCM – easy to use, hardware dependent
RAM – easy to use, no hardware dependence
NAND – required complex solution, hardware dependent



13

Backup



14

0
16

32
48

64
80

96

Performance expectations
(prototype based data)

A
ve

ra
g
e

p
er

fo
rm

an
ce

 

Memory in use,
Mbytes

32MB RAM

32MB RAM + 16MB PCM + ZLIB1



15

Performance expectations (RAM)

memory
in use

memory access
speed

RAM
size

no swap
compressed swap in RAM

RAM disk
size

RAM access
speed

swap access
speed



16

Performance measurement setup

System:

• PXA271 (416 MHz) with 32 Mbytes of RAM (Mainstone II)

• Linux kernel 2.6.23.8

• rootfs on M18 (JFFS2)

Benchmarking application:

• Allocates memory chunk by chunk

• Fills it with data providing accurate compression ratio

• Accesses previously allocated chunks
– random reads
– fixed reads
– last reads

• Measures performance depending on amount of allocated memory

• Deallocates memory



17

0

1

10

100

1000

0 16 32 48 64

Memory in use, Mbytes

Pe
rf

or
m

an
ce

, %

fixed reads random reads last reads

89%

User-mode performance
(PXA271, 32MB RAM)


