
Community and Embedded Linux

David Woodhouse

Embedded Linux Conference Europe

November 2008



2

• Headless?

• Handheld?

• Low power?

• Physical size?

• Limited RAM?

• Limited persistent storage?

• Other...

What does “Embedded” mean anyway?



3

So what about “Embedded maintainer”?

• Chasing patches?

• Looking out for stupidity elsewhere
– Bloatwatch

• Contact point for Andrew Morton

• Encouraging people to work together
– Companies

– Community



4

Embedded “communities” and users

• OpenWRT

• OpenMoko

• OLPC

• Maemo

• Moblin

• Android

• handhelds.org



5

How well do they work with upstream?

• How many local patches not submitted?

• How visible and accessible is their work?

• How old is their kernel?

• How sane is their code?



6

How well do they work with upstream?

• OLPC
– A dozen or so sets of changes, against 2.6.27.4:

95 files changed, 7585 insertions(+), 1133 deletions(­)

• Moblin
– 23 patches against 2.6.24:

174 files changed, 120867 insertions(+), 208 deletions(­)

• OpenWRT
– 160 patches against 2.6.27:

 410 files changed, 65387 insertions(+), 1027 deletions(­)

– AND 425 extra files, with 125000 extra lines

• Maemo (Nokia Internet Tablets)
– FAIL



7

Why is upstream so important?

• Ease of merging fixes and new features

• Avoids duplicated effort

• External code review

• Compile testing

• Automated bug checking (Coccinelle, etc.)

• Updates for kernel API changes

• “Janitors”



8

Why is upstream so important?

Divergence

Is Pain



9

Why do people “hoard” code?

• “Too hard” to write decent code get code accepted

• Not enough time

• Developed against ancient kernels

• Dubious legal issues

• Upstream resistance to changes



10

How can we make things better?

• Use git

• Keep separate git trees for “topics”

• Pull topic trees into “working” tree
– Commit to working tree only as last resort

– Regularly assess “outstanding” code in working tree

• Work with upstream maintainers regularly

• Call on dwmw2 and akpm where necessary



11

Adopt a driver!

• Take responsibility for shepherding code upstream

• Clean it up and make it look sane

• Talk to relevant maintainers

• Put it into a git tree based on a current kernel

• Where appropriate, get it into linux-next...

• ...or if it's still crap, GregKH's “staging” tree

• Make sure people know how to find you

• Respond to feedback



12

Conclusion

• We need to work better as a community before we can 
point fingers at companies who don't play nicely.



13

Questions?


	Slide 1
	<Slide Title>
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Questions?

