
Introduction to Reverse Engineering

Mike Anderson
Chief Scientist

The PTR Group, LLC.
mailto: mike@theptrgroup.com
http://www.ThePTRGroup.com

mailto:mike@theptrgroup.com
http://www.theptrgroup.com/

What We Will Talk About…

• What is reverse engineering?

• Why do it?

• HW & SW Tools

• Impediments

• The process

• Knowing when you are done

• Where to from here? Source: N0where.net

What is Reverse Engineering?

• Given a device or piece of hardware or software, deconstruct it to determine
how it was built

• This may entail removing the case, repopulating connectors, disassembling the
software

• May require the use of hardware debuggers and other test equipment to
determine the nature of the interfaces

• Beware! In some jurisdictions, just going this far can be illegal!
• In the U.S., we have the DMCA that might preclude any work with the firmware

Why Do RE?

• Goals may be to repair/repurpose/upgrade or maybe just curiosity
• The Repair Movement is gaining some ground

• Often, projects get lost in the shuffle (device archeology)
• Developers move on and the documentation may be scant at best

• Needed modifications might be difficult or impossible

• You may be presented with a suspicious device
• It may be counterfeit, or have additional circuits embedded

• There maybe some special software on the device that
you’re concerned about
• Malware, spyware, govware, etc.

Source: eevblog.com

Tools You Should Have…

• In order to get access to the device, you’ll likely need a few
|special tools
• Torx driver set, screw drivers of various sizes, precision utility knife,

“spudgers”, guitar picks, suction cups, small hex drivers, etc.
• Thanks to the “Right to Repair” movement, these are available as a kit

for those with a little $$$

• In the event they use adhesives to seal the case, heat will often
do the trick to soften the glues
• Heat gun/blow drier, or microwaveable gel

• Then, spudge away!

• Inspection microscope
• Useful to examine small part numbers

Source: ifixit.com

Source: amazon.com

Electrical Test Equipment

• A VOM is a must
• Spend a little $$$ and get a good one

• A DSO is also handy for examining high-speed signals
• Dual channel, 50-100 MHz is good enough for most

applications
• Make sure you get high-voltage probes as well

• A 8/16-channel logic analyzer
• More channels are nice, but often not needed

• I love my Salaea Logic Pro 8 with the USB 3 interface

• A SiGrok-compatible signal identification interface
• Like the Bus Pirate or similar

Source: fluke.com

Source: gwinstek.com

Source: salaea.com

Source: seeedstudio.com

Logic Analyzers as Protocol Decoders

• Many logic analyzers now include
protocol decoding
• I2C, SPI, asynchronous serial, CAN and more

• These can save days of effort in trying
to decode the target IDs or chip selects
when looking at hardware

• More expensive units can decode PCIe and
other high-speed buses

Source: salaea.com

Do Your Research

• Who makes the device?
• Is there an ODM? If so, who is it?

• Is there an FCC registration?
• Pull the registration info

• There may be one radio used by many similar devices,
one of which has more information available

• Are there patents involved?
• Patents are often public record, too

• Who are the patent holders?
• Information about them may prove useful

Source: fccid.io

Opening the Case

• Just opening the case can often be a challenge
• Manufacturers want to keep you from seeing what

they’ve done – both good and bad

• Techniques to keep the casual user out of their
hardware include:
• Using special screws
• Special adhesives
• Adding anti-tamper sensors
• Encasing the device in epoxy

• Also called “potting” the device
Source: bobmackay.com

Source: teacoinc.com

Source: ehx.com

Dealing with Anti-Tamper Switches and Potting
• A well-equipped RE shop will have an X-Ray inspection capability

• It lets you know what’s in the box that may be waiting to trigger

• Anti-tamper case switches can be used to zero-out flash
• LN2 does a great job at slowing the switches down enough to

keep them from triggering until you can control them

• Potting comes in several varieties including polyester and
epoxy resins

• Hard and soft types that use different techniques to remove
• Oftentimes, heating in an oven will make them pliable

• Make sure the temperature is less than the melting point of the ROHS solder and
plastic connectors (watch for toxic fumes!)

• Solvents like WD-40, dichloromethane, nitric or sulfuric acid or isopropanol may
be required

• You may need special permits for some of these (again, watch for toxic fumes!)

• When all else fails, use “cut and scrape” techniques
• Utility knife and Dremel

Source: safetysign.com

Source: landainternational.com

Examining the Device

• Once you’ve got it out of the case, take a
close look at the device to see if you can
identify the parts that are being used
• For those you can identify, try to obtain the data

sheets from the manufacturer
• Easier said than done in many cases

• Use teardown sites like iFixit.com to see if they’ve
already done a teardown to help you understand the components

Source: beyondtrust.com

Example Data Sheet

• Accessing the data sheets can help
understand the capabilities of the part that
may be of use to you
• E.g., knowing there are 2 U(S)ARTS or that the

device supports SPI flash, etc.
• Logic voltage levels

• The data sheets may also outline what
software algorithms are available for the
part
• Like that the part supports a 16-bit CRC engine

or has built-in communications protocols Source: microchip.com

Repopulating Interfaces

• Many manufacturers will depopulate debug and serial interfaces
• JTAG interfaces often have a familiar look, but

serial ports can be elusive

• Use a VOM to measure the voltages
• Find a good ground on the board to use as a reference

• Be careful about voltage logic levels
• Using 5V on a 3.3V device will release the magic blue smoke

• Fast signals my not be measurable on a VOM
• Use the DSO for these

• Or, use a signal tester like the Bus Pirate to determine what kind of signal it is
• Good tutorials for this at http://dangerousprototypes.com/docs/Bus_Pirate_101_tutorial

http://dangerousprototypes.com/docs/Bus_Pirate_101_tutorial
http://dangerousprototypes.com/docs/Bus_Pirate_101_tutorial

Repopulating Interfaces #2

• You might get lucky and the manufacturer
has left the solder mask on the board indicating
what type of device it was
• UART, SERIAL, JTAG

• As pin counts go, a typical serial interface requires
3 pins
• TX, RX & GND

• JTAG requires 5 pins
• TDI, TDO, TCK, TMS and TRST

• Often in a 10, 14 or 20-pin configuration

• Serial Wire Debug (SWD) requires only 2 pins
• Generally targeted at ARM mCs but can be

extended to larger Cortex-A parts
• SWO adds one more pin Source: segger.com

Source: beagleboard.org

Source: ;iatoss.com

Source: sil iceo.es

Source: zibotronix.com

Source: openwrt.org

Why Repopulate the Interfaces?

• For serial ports, the goal is to be able to watch the boot cycle
• This will provide clues as to what OS it’s running and if there is a way to break into the

boot cycle without having the development credentials

• For JTAG/SWD, it’s about being able to read the firmware out of the boot flash

• Once you have the firmware, you can start the RE of the boot code
• What boot firmware is it using?
• Is there a device tree blob?

• Needed if you’re going to update the OS

• What OS is it using?
• Which version?

Other Ways to get the OS Image

• If the device is/was being maintained, go to the
manufacturer’s website and see if there is update
firmware available for download
• If so, download it and let’s have a look…

• Depending on the vendor, you might be
able to download the update directly, or you
may have to go through the device itself to
get the update

Once You Have the Image…
• Example: Actiontec MI424WR-GEN3I

$ file MI424WR-GEN3I.rmt

MI424WR-GEN3I.rmt: data

$ binwalk MI424WR-GEN3I.rmt

DECIMAL HEXADECIMAL DESCRIPTION

--

163 0xA3 uImage header, header size: 64 bytes, header CRC:
 0x70F0614A, created: 2014-02-03 21:18:38,
 image size: 6506664 bytes, Data Address: 0x1000000,
 Entry Point: 0x1000000, data CRC: 0x42627A27,
 OS: Linux, CPU: ARM, image type: OS Kernel Image,
 compression type: none, image name: "OpenRG"

12591 0x312F gzip compressed data, maximum compression, from Unix,
 last modified: 2014-02-03 21:18:36

2159504 0x20F390 LANCOM WWAN firmware

• Now, we know quite a bit about what’s going on the device:
• We know that it’s an ARM-based Linux device with U-Boot as the boot loader
• Given the date, this may be pre-device tree

• Using dd, we can dissect the image

Can you guess
what these are?

Now, Separate the Pieces
$ dd if=MI424WR-GEN3I.rmt of=uboot bs=1 skip=163 count=12428

12428+0 records in

12428+0 records out

12428 bytes (12 kB, 12 KiB) copied, 0.0407348 s, 305 kB/s

$ dd if=MI424WR-GEN3I.rmt of=os.gz bs=1 skip=12591 count=2146913

2146913+0 records in

2146913+0 records out

2146913 bytes (2.1 MB, 2.0 MiB) copied, 2.19151 s, 980 kB/s

$ dd if=MI424WR-GEN3I.rmt of=LANCOM.FW bs=1 skip=2159504

4347387+0 records in

4347387+0 records out

4347387 bytes (4.3 MB, 4.1 MiB) copied, 4.4023 s, 988 kB/s

Start Poking Around…

• Now, let’s decompress the OS image and see what we’ve got:
$ gunzip os.gz

$ binwalk os

DECIMAL HEXADECIMAL DESCRIPTION

--

72832 0x11C80 gzip compressed data, maximum compression, from Unix, last modified: 2014-02-03 21:12:45

888832 0xD9000 CramFS filesystem, little endian, size: 3866624 version 2 sorted_dirs CRC 0x0A9D581F, edition 0, 549 blocks, 451 files

4755456 0x489000 CramFS filesystem, little endian, size: 589824 version 2 sorted_dirs CRC 0x2DF0DBD1, edition 0, 52 blocks, 34 files

5455117 0x533D0D Certificate in DER format (x509 v3), header length: 4, sequence length: 1284

6546105 0x63E2B9 Certificate in DER format (x509 v3), header length: 4, sequence length: 5436

6546181 0x63E305 Certificate in DER format (x509 v3), header length: 4, sequence length: 5436

6606637 0x64CF2D Certificate in DER format (x509 v3), header length: 4, sequence length: 4099

6622237 0x650C1D Certificate in DER format (x509 v3), header length: 4, sequence length: 3

6638405 0x654B45 Certificate in DER format (x509 v3), header length: 4, sequence length: 3

6917709 0x698E4D Certificate in DER format (x509 v3), header length: 4, sequence length: 5512

6951609 0x6A12B9 Certificate in DER format (x509 v3), header length: 4, sequence length: 5568

6960481 0x6A3561 Certificate in DER format (x509 v3), header length: 4, sequence length: 5552

6960525 0x6A358D Certificate in DER format (x509 v3), header length: 4, sequence length: 5548

6960569 0x6A35B9 Certificate in DER format (x509 v3), header length: 4, sequence length: 1476

7378672 0x7096F0 Linux kernel version "2.6.16.14feroceon #1 Mon Feb 3 13:18:27 PST 2014"

7385656 0x70B238 CRC32 polynomial table, little endian

7386771 0x70B693 Copyright string: "Copyright 1995-1998 Mark Adler "

7401144 0x70EEB8 Unix path: /home/bhr/Rev-I/Verizon/tag-bhr-revI-ipv6-40-21-10-3/bhr/rg/os/linux-2.6/init/main.c

7403432 0x70F7A8 Unix path: /home/bhr/Rev-I/Verizon/tag-bhr-revI-ipv6-40-21-10-3/bhr/rg/os/linux-2.6/arch/arm/kernel/irq.c

7405796 0x7100E4 Unix path: /home/bhr/Rev-I/Verizon/tag-bhr-revI-ipv6-40-21-10-3/bhr/rg/os/linux-2.6/arch/arm/kernel/traps.c

…

General Approach to RE a Binary
• We got really lucky with this example

• Most firmware is not so forgiving

• The general approach is to first try to assess the binary
• Look at the entropy of the binary using binwalk

• Entropy near 1 means it’s either compressed or encrypted
$ binwalk -E MI424WR-GEN3I.rmt

• Use strings to look for printable character sequences:
$ strings MI424WR-GEN3I.rmt | more

start section

rg_hw: FEROCEON

dist: FEROCEON

vendor: VERIZON

prod_version: 4.7.5.3.31.2.19

version: 40705

ext_ver: 40.21.10.3

Next Step…

• Once you think you’ve got it separated
out a bit, take another look into the entropy
• After decompressing…

• We know from the binwalk, that there
are 2 CRAMFS images on the front
• We see that in the entropy

• We can separate them out and mount
them using loopback mounts to take
a peek inside
• Left for another time…

Looking Closer at the Binaries

• There are a number of additional tools for looking at binaries
• Binutils like objcopy, objdump

• Remember that objdump has a disassemble option
• ELF utilities like readelf

• Use tools like strace and ltrace to watch the execution
• Run the applications in a VM or chroot jail if you’re unsure of what they do

• Disassemblers such as the ERESI project
• https://github.com/thorkill/eresi

• Professional tool chains/disassemblers like IDA Pro
• https://www.hex-rays.com/products/ida/

• You can invest a lot of time and $$$ in this if you really want to

https://github.com/thorkill/eresi
https://github.com/thorkill/eresi
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/

IDA Pro

Source: hex-rays.com

Always use Protection…

• Never run a foreign binary on your test platform without taking significant
precautions

• Using QEMU is a good start
• Support for most of the common CPU varieties

• Or, use a VM like KVM to keep the application bottled up

• At a minimum, use a chroot/LXC session to show a small distro of files that
might make the application wake up

• Capture the run with strace/ltrace to see what functions it’s using
• Note any anomalous behavior

Always use Protection… #2

• Alternatively, transfer the application to a small platform like a BeagleBone or
Raspberry Pi to run.
• If something goes wrong, pull the plug

• You can always reformat the SD card and start again
• Or, can you?

• In general, don’t run with IP enabled (pull the Ethernet cable) or go into IPTables and
block all outbound traffic until you have a warm fuzzy that it’s OK

• If you believe that the application isn’t doing anything odd, advance the time by a
month, quarter, 6 months and a year to see if something wakes up to beacon out to
the bad guys

Example RE of a Protocol

• In some cases, we’re not as interested in the device itself as we are the
communication protocols

• E.g., Ethernet cabling does not immediately imply they’re using Ethernet
• We have to check it to make sure before plugging it into our test boards

• Serial protocols are significantly difficult to RE
• Dealing with an ancient technology that few folks still understand

• The use of logic analyzers with protocol decoders is your savior here

Check your voltages

• There are several options for serial protocols when it
comes to voltages
• 5V, 3.3V, 1.8V at a minimum

• Serial ports traditionally have power on either the TX or
the RX lines that you can test for voltages
• VOM might work OK if the voltages are steady

• If there’s any weirdness, you might have to resort to the
oscilloscope
• Use the high-voltage probe just to be safe

• See if you can get the device to send any data and watch the output

Try to Capture Some Data

• The bit width told us it was ~56Kbs, but there appeared to be some drift

Tinker with the Protocol Decode

• If your logic analyzer supports multiple protocols, try switching the
interpretation of the data into different protocols to see if anything makes sense

• How many pins appear to have a signal on them?
• 2 pins might be a simple serial line

• Look at the protocol capture to see if there appears to be a clock
• Could mean I2C to other simple bus

• SPI is another possibility

• We were afraid it was bit-banged

• In this case, it was serial – with a twist

Strange Quirk to the Signal

• Because the voltages were at 0V most of the time and then came alive, it looked
like one of the protocols that does a Break-after-Mark

• Closer examination showed that it didn’t follow the typical B-A-M pattern

• It turned out that the developers were trying to save battery power by turning
the device off between signaling and used a high voltage (looked like a BREAK
signal) to wake up the circuitry and then start clocking data

• This means that if you want to inject a new command, you’ll have to follow the
same pattern or the device battery will die quickly

Using a Microcontroller to do testing

• Microcontrollers are great in that we have
I2C, SPI, serial, PWM and GPIO

• The micro we used was a TI CC3200
• Right serial voltage level at 3.3V

• This also gave us Wi-Fi and JTAG so we could have some
options for interfacing with the micro

• We opted to use the Arduino-like Energia as the control
software
• Simple to work with

First Try…

• But the first try to inject a command
failed miserably
• We knew we needed a diode to keep

the signal from going back into the micro

• We took a look at the o’scope and
we were not pleased

• The voltage was cut in half and the
edges looked horrible

Different Diode Fixed it

• What we needed was a high-speed schottky diode
• Handles faster voltage transitions

• And, we needed to power the micro and keep the
signal on the same reference ground

• We were able to tap into the power being supplied
by the device itself through a buck transformer to
power the micro
• It kept us on the same reference ground

• This allowed us to inject commands and succeed!

Summary

• Reverse engineering is an incredibly challenging problem
• Lots of reasons you might want to do it

• Make sure you gather your tools
• Hardware and software tools

• Understand what your goals are and when to declare victory

• If you really like to do this kind of thing, the Repair Movement could use your help
• Commercial RE is also a thing

• Understand the legal implications of what you’re doing in the local jurisdiction
• Just because you own the device does not mean you can do anything you want

Questions?

