
Linux Kernel Validation Tools

Nicholas Mc Guire
Distributed & Embedded Systems Lab

Lanzhou University, China
http://dslab.lzu.edu.cn



Virtualization 1

Tools for GNU/Linux

• problem statement

• tools overview

• static instrumentation

• development life-cycle

• conclusion

tools are one of the strengths of GNU/Linux - evaluate the capabilities

to see if it fits your project needs.

ELC April 2007



Problem Statements 2

Problem Statement

• resource limitations

• no user monitoring

• applicaton scope insufficient

• failure analysis mandatory

Embedded systems are closer to clusters and servers than to desk-top

systems - adjust your debugging !

ELC April 2007



Overview 3

Debugging Tools for Embedded GNU/Linux

Static Instrumentation Dynamic Instrument.

Breakpoint Debugging Dedicated Solutions

KFI/KFT
GCOV/Kernel GCOV
LTT/LTTng
GProf/Kernel GProf

Kprobes
GDB Kernel Tracepoints
KGDB Tracepoints
Monitors

KGDB
BDI 2000 / JTAG
Lauterbach / JTAG

User Mode Linux
/proc interfaces
Kernel Builtins
Oprofile (hardware support )

ELC April 2007



Tools Overview 4

Kernel Space Tools

• GDB/KGDB

• KFI/KFT

• GCOV/Kernel GCOV

• Oprofile

• LTT/LTTng

• Kprobes

• Kernel builtin debug extensions

• /proc interface

ELC April 2007



Tools Overview 5

User Space Tools

• strace/ltrace/xtrace/mtrace

• Checkpoint Restart: i.e. BLCR

• LD PRELOAD: i.e. libSegrault.so

• tons of malloc-debug-libs (i.e. njamd)

• BGCC/SSP gcc extensions

• *grind/DRD (?)

• standard unix tools

ELC April 2007



Tools Overview 6

GDB/KGDB

• /proc/kcore to check the running kernel

• KGDB to debug the kernel

• UML under GDB control

• GDB over BDM (i.e. BDI 2000)

• GDB kernel tracepoints interface to kprobes

• KGDB tracepoints (very experimental at this point)

GDB will only help you if you have the experience of using it in the

kernel - plan it in in your software development life cycle

ELC April 2007



Static Instrumentation 7

Static Instrumentation

Properties of static insturmentation

• Pro

– Relatively easy to use

– Good system level relative timing (statistical)

– Distortion of detailed timings

– Supported in User Mode Linux

• Con

– Relatively large overhead

– Large data volume

– Conflicting patches (unfortunately)

– Interpretation requires experience with healthy systems

ELC April 2007



Tools Overview 8

KFI/KFT

Kernel Function Instrumentation/Kernel Function Trace

• -finstrument-functions

• set config via /proc/kft

• get data via /proc/kft data

• decode data via addr2sym/kd

• 50-200% overhead

• powerfull tool to understand the kernel

KFI/KFT will be helpfull in finding complex bugs - but only if you know

how to use it before you need it !

ELC April 2007



Tools Overview 9

GCOV / Kernel GCOV

• spaning tree of the kernel functions

• 64bit event counters per basic block

• interface via /proc/gcov

• Code coverage and branch prediction

• helps in system and kernel level performance assessment

• Allows optimization by recompiling with -fbranch-probabilities

• Hard to assign data to specific events/processes

GCOV is a standard profiling tool extended into kernel space with kernel

GCOV - it is also available for UML

ELC April 2007



Tools Overview 10

Oprofile

• built on performance counters (PMC)

• X86 and PPC

• precise for low-level HW-units

• low overhead

• inprecise with respect to timing and PID assignment

Oprofile is primarily used for performance tuning and locating of

hardware artefacts (i.e. cach thrashing, BTB overload)

ELC April 2007



Tools Overview 11

LTT/LTTng

• static instrumentation

• data via relayfs

• gives good system level overview

• good for detecting applicaton interaction problems

• low overhead if used very carfully - default setting not usable

• X86 centric but PPC port available (whith delay).

LTT is relatively easy to use - good starting point to locate ”unknonw

unknowns”.

ELC April 2007



Tools Overview 12

Kprobes

• breakpoint debugging in kernel mode

• Kprobes: insertion of arbitrary handlers

• Jprobes: handler at function entry

• return probes: handler at function return

• low overhead if used selectively

• relatively complex to use

ELC April 2007



Tools Overview 13

Kernel Builtins

• scheduling statistics

• preemt timing measurement

• lock dependency checker

• vm debugging options

there is much much more here - and it is becomming more sophisticated

all the time - Mainstream Linux has dramatically improved with the

2.6.X kernel series.

ELC April 2007



Tools Overview 14

/proc Interface

• 0-overhead

• easy to use

• easy to integrate into user interface

• highly specialized information only

• secure tool for monitoring

ELC April 2007



SW Lifecycle Issues 15

SW-Lifecycle Tools Issues

• plan in tools in your regular test proceedures

• if you don’t know the healthy system you can’t read the pathological

case !

• log your test and debug sessions !

• plan in the time for learning tools - you can’t start using them when

you need them

ELC April 2007



SW Lifecycle Issues 16

SW-Lifecycle Issues

• go to the target as late as possible

• keep your code arch independant by testing on two platforms

• automate the usage of Linux kernel debug tools

• integrate the tools into your product so you can get hig quality bug

reports from your customers

Not every product will need this - but many more than currently are

using the capabilities of GNU/Linux

ELC April 2007



SW Lifecycle Issues 17

Conclusion

• Learning GNU/Linux tools is an investment

• GNU/Linux tools allow better inspection than most commercial tools

• The GNU/Linux tools cover the entire spectrum from the applicatio

layer into the kernel down to the hardware

• Dont wait to learn them until you need them !

Its free-software but you must invest in your engeneers so they can use it.

ELC April 2007


