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Tools for GNU/Linux

• problem statement

• tools overview

• static instrumentation

• development life-cycle

• conclusion

tools are one of the strengths of GNU/Linux - evaluate the capabilities

to see if it fits your project needs.
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Problem Statement

• resource limitations

• no user monitoring

• applicaton scope insufficient

• failure analysis mandatory

Embedded systems are closer to clusters and servers than to desk-top

systems - adjust your debugging !

ELC April 2007
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Debugging Tools for Embedded GNU/Linux

Static Instrumentation Dynamic Instrument.

Breakpoint Debugging Dedicated Solutions

KFI/KFT
GCOV/Kernel GCOV
LTT/LTTng
GProf/Kernel GProf

Kprobes
GDB Kernel Tracepoints
KGDB Tracepoints
Monitors

KGDB
BDI 2000 / JTAG
Lauterbach / JTAG

User Mode Linux
/proc interfaces
Kernel Builtins
Oprofile (hardware support )
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Kernel Space Tools

• GDB/KGDB

• KFI/KFT

• GCOV/Kernel GCOV

• Oprofile

• LTT/LTTng

• Kprobes

• Kernel builtin debug extensions

• /proc interface

ELC April 2007



Tools Overview 5

User Space Tools

• strace/ltrace/xtrace/mtrace

• Checkpoint Restart: i.e. BLCR

• LD PRELOAD: i.e. libSegrault.so

• tons of malloc-debug-libs (i.e. njamd)

• BGCC/SSP gcc extensions

• *grind/DRD (?)

• standard unix tools
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GDB/KGDB

• /proc/kcore to check the running kernel

• KGDB to debug the kernel

• UML under GDB control

• GDB over BDM (i.e. BDI 2000)

• GDB kernel tracepoints interface to kprobes

• KGDB tracepoints (very experimental at this point)

GDB will only help you if you have the experience of using it in the

kernel - plan it in in your software development life cycle
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Static Instrumentation

Properties of static insturmentation

• Pro

– Relatively easy to use

– Good system level relative timing (statistical)

– Distortion of detailed timings

– Supported in User Mode Linux

• Con

– Relatively large overhead

– Large data volume

– Conflicting patches (unfortunately)

– Interpretation requires experience with healthy systems
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KFI/KFT

Kernel Function Instrumentation/Kernel Function Trace

• -finstrument-functions

• set config via /proc/kft

• get data via /proc/kft data

• decode data via addr2sym/kd

• 50-200% overhead

• powerfull tool to understand the kernel

KFI/KFT will be helpfull in finding complex bugs - but only if you know

how to use it before you need it !
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GCOV / Kernel GCOV

• spaning tree of the kernel functions

• 64bit event counters per basic block

• interface via /proc/gcov

• Code coverage and branch prediction

• helps in system and kernel level performance assessment

• Allows optimization by recompiling with -fbranch-probabilities

• Hard to assign data to specific events/processes

GCOV is a standard profiling tool extended into kernel space with kernel

GCOV - it is also available for UML
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Oprofile

• built on performance counters (PMC)

• X86 and PPC

• precise for low-level HW-units

• low overhead

• inprecise with respect to timing and PID assignment

Oprofile is primarily used for performance tuning and locating of

hardware artefacts (i.e. cach thrashing, BTB overload)
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LTT/LTTng

• static instrumentation

• data via relayfs

• gives good system level overview

• good for detecting applicaton interaction problems

• low overhead if used very carfully - default setting not usable

• X86 centric but PPC port available (whith delay).

LTT is relatively easy to use - good starting point to locate ”unknonw

unknowns”.
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Kprobes

• breakpoint debugging in kernel mode

• Kprobes: insertion of arbitrary handlers

• Jprobes: handler at function entry

• return probes: handler at function return

• low overhead if used selectively

• relatively complex to use
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Kernel Builtins

• scheduling statistics

• preemt timing measurement

• lock dependency checker

• vm debugging options

there is much much more here - and it is becomming more sophisticated

all the time - Mainstream Linux has dramatically improved with the

2.6.X kernel series.
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/proc Interface

• 0-overhead

• easy to use

• easy to integrate into user interface

• highly specialized information only

• secure tool for monitoring
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SW-Lifecycle Tools Issues

• plan in tools in your regular test proceedures

• if you don’t know the healthy system you can’t read the pathological

case !

• log your test and debug sessions !

• plan in the time for learning tools - you can’t start using them when

you need them
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SW-Lifecycle Issues

• go to the target as late as possible

• keep your code arch independant by testing on two platforms

• automate the usage of Linux kernel debug tools

• integrate the tools into your product so you can get hig quality bug

reports from your customers

Not every product will need this - but many more than currently are

using the capabilities of GNU/Linux
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Conclusion

• Learning GNU/Linux tools is an investment

• GNU/Linux tools allow better inspection than most commercial tools

• The GNU/Linux tools cover the entire spectrum from the applicatio

layer into the kernel down to the hardware

• Dont wait to learn them until you need them !

Its free-software but you must invest in your engeneers so they can use it.
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