System-in-Package Technology:
Making it Easier to Build Your Own Linux Computer

Jason Kridner
Erik Welsh
03/12/2018
The SBC Prototyping Revolution

- Proliferation of prototyping boards
 - Huge array of Processors
 - Every kind of connector
 - Add-on boards for additional functionality

- Developing communities
 - Support for new users
 - Collaboration for experienced developers

- Exposure to Linux
 - Development of drivers
 - Open source projects
Software Drives Hardware Decisions

▪ Software developers must be involved in Hardware development
 ▪ If there is no SW for a piece of HW, then don’t use it
 ▪ Many platforms provide great starting point for SW development
 ▪ Focus on value added feature differentiation
 ▪ Re-writing drivers does not add value
 ▪ Don’t allow changes in HW for the sake of changing HW
 ▪ SW impact needs to be understood

▪ With great power, comes great responsibility …
 ▪ Choosing a platform with Open Hardware
 ▪ Using components that can be obtained from Distribution / in small quantities
 ▪ Hardware should also focus on value added features
 ▪ Routing DDR does not add value
“Mind the Gap” Moving from Prototype to Product

- Developing custom PCB
 - Smaller is better … but smaller is harder
 - Open hardware help development; known good solutions

- Migrating Software
 - Porting from development board to final components
 - Bring up & Provisioning

- Doing more with less
 - Smaller teams
 - Need tools that reduce time and effort

Photo credits: Dilbert by Scott Adams
System-in-Package provides simple Linux HW Solutions

- Minimum Hardware Required to Run Linux
 - Connect power inputs
 - Connect clock inputs
 - Select boot mode
 - Provide Linux boot image

- Proven Linux solution

- Like working with a microcontroller but now with the power of Linux
Moving up from a microcontroller can be scary …

Microcontroller System Block Diagram

- Power Management
- CLK
- JTAG Provisioning
- WiFi / BLE
- Sensors
- User I/O
- Motor / Accuator

Becomes ….
How can we simplify this complexity?
System-in-Package
What is System-in-Package

Attached Die + Discrete Components + Substrate + Pins
Why Can’t We Just Use an SoC?

- System-In-Package (SiP) - Integrates Best of All Processes

- SoC - Compromise in all Areas
 - RF
 - Power
 - Processor
 - Sensor
 - Memory
 - Analog

- Moore’s Law Process Improvements

- Power Dissipation vs. Transistor Density
- Clock Frequency vs. Voltage
- High vs. Low
OSD3358 SiP Integration

1130 mm²
BeagleBone Black Board

- DDR3 SDRAM 800MHz
- TI Sitara AM335x Cortex-A8 1GHz
- TI TL5209 LDO 3.3V Out
- TI TPS65217C PMIC
 - Vin: Battery, 5VDC, USB
 - Vout: 1.8V, 3.3V, Sys_Vout

All Needed Resistors, Capacitors, and Inductors
A Closer Look at a SiP

6 Layer Substrate

Manufactured SiP

Cross-Section SEM Picture of SiP
PocketBeagle

- http://bbb.io/pocket
 - Forums: http://bbb.io/discuss

- Based on Octavo Systems OSD3358-SM SiP
 - ARM Cortex-A8 @ 1-GHz
 - 512 MB DDRs RAM integrated
 - ARM Cortex-M3
 - 2×200-MHz RISC Programmable Real-time Units (PRU)
 - Integrated power management

- Connectivity
 - Bootable microSD card slot
 - High speed USB 2.0 OTG (host/client) control signals
 - Dual 36-pin expansion headers
 - 8 analog inputs (6 @ 1.8V and 2 @ 3.3V)
 - 44 digital GPIOs
 - 3 UARTS
 - 2 I2C
 - 2 SPI
 - 4 PWM
 - 2 QEP
 - 2 CAN

- $25

56mm x 35mm x 5mm
PocketBeagle Block Diagram

PocketBeagle Block Diagram

OSD335x-SM SiP
Contains:
AM3358
TPS65217C
TL5209
EEPROM

User I/O:
PWR PB

µUSB Host Connector

5 Volts

GPIO

µSD Card Connector

PocketCape P2 Signals

PocketCape Header (P2)

PocketCape P1 Signals

PocketCape Header (P1)

JTAG Pads

JTAG

User I/O:
4 LEDs

PocketCape P1 Signals

5 Volts

µUSB Host Connector

Connector

Connector

User I/O:
4 LEDs

PocketCape Header (P1)

PocketCape P2 Signals

PocketCape Header (P2)
PocketBeagle Schematics
Simplified Layout

All Signals Escaped in a Single Layer

- 6 mil Trace Width
- 6 mil Space

All Power Domains and Internal Signals located in the center for easy connection

https://octavosystems.com/app_notes/osd335x-sm-layout-guide/
PocketBeagle Layout

- Open Source Schematics & Layout
- 4 layers PCB
 - 6 mil trace / 6 mil space
 - 15 mil drill / 25 mil via
Simplified Board Bring Up Process

- Hardware Bring Up
 - Verify Power Isolation (ie your power rails are not shorted to ground – Don’t release the magic smoke)

- Software Bring Up
 - Download Latest Image from BeagleBoard.org
 - Modify the device tree to meet your needs
 - Power up the board and check that everything boots properly

- You don’t worry about
 - Bad voltages to the processor or DDR
 - DDR not working
Modifying Your Device Tree

- Development boards provide good device tree infrastructure
 - Majority of your device tree is already done for you
 - Only update the items that are different for your board
 - Many examples to mine for information / help
 - https://github.com/RobertCNelson/dtb-rebuilder

- Prototyping can be done with device tree overlay
 - Allows testing on your SBC prototyping board
Using a SiP in your Linux Computer Design Will:

- Bring you 100+ components in one package
 - Makes board design faster, simpler and easier to add your own new features
 - Ensures easy board bring-up

- Give you the heart of the Computer Hardware in a single BGA package
 - Lower cost PCB, fewer board layers, single sided
 - Easy to manufacture with - Some have even hand soldered it!

- Bridge the gap between Prototype and Production
 - Open Hardware + Open Source Software
 - Easy migration from SBC prototyping board to your custom PCB
Thank You

For more information come to our table at ELC Technical Showcase