
System-in-Package Technology:

Making it Easier to Build Your
Own Linux Computer

Jason Kridner
Erik Welsh
03/12/2018

The SBC Prototyping Revolution

▪ Proliferation of prototyping boards

▪ Huge array of Processors

▪ Every kind of connector

▪ Add-on boards for additional functionality

▪ Developing communities

▪ Support for new users

▪ Collaboration for experienced developers

▪ Exposure to Linux

▪ Development of drivers

▪ Open source projects

Software Drives Hardware Decisions

▪ Software developers must be involved in Hardware development

▪ If there is no SW for a piece of HW, then don’t use it

▪ Many platforms provide great starting point for SW development

▪ Focus on value added feature differentiation

▪ Re-writing drivers does not add value

▪ Don’t allow changes in HW for the sake of changing HW

▪ SW impact needs to be understood

▪ With great power, comes great responsibility …

▪ Choosing a platform with Open Hardware

▪ Using components that can be obtained from Distribution / in small quantities

▪ Hardware should also focus on value added features

▪ Routing DDR does not add value

“Mind the Gap” Moving from Prototype to Product

▪ Developing custom PCB

▪ Smaller is better … but smaller is harder

▪ Open hardware help development; known good solutions

▪ Migrating Software

▪ Porting from development board to final components

▪ Bring up & Provisioning

▪ Doing more with less

▪ Smaller teams

▪ Need tools that reduce time and effort

Photo credits: Dilbert by Scott Adams

System-in-Package provides simple Linux HW Solutions

▪ Minimum Hardware Required to Run Linux

▪ Connect power inputs

▪ Connect clock inputs

▪ Select boot mode

▪ Provide Linux boot image

▪ Proven Linux solution

▪ Like working with a microcontroller but now with the power of Linux

Power

Clock

Boot Mode

Boot Media

Moving up from a microcontroller can be scary …

µController

Power

Management
WiFi / BLE

JTAG

Provisioning Motor / Accuator

Sensors

User I/O

Microcontroller System Block Diagram

Becomes ….

CLK

Typical Microprocessor System Block Diagram

Power

Management

WiFi / BLE

Flash

Provisioning

Motor / Accuator

Sensors

User I/O

USB / Ethernet

NV Storage

(eMMC / Flash)

CLK

AC

USB

AC

USB

INT_LDO

BYPASS

VIN_DCDC1

VIN_DCDC2

VIN_DCDC3

VIN_LDO

AGND

PGND

LS1_IN

LS2_IN

VIO

SYS

Bat

L1

VDCDC1

(1.5v)

L2

VDCDC2

(1.1v)

L3

VDCDC3

(1.1v)

VDDS_DDR

VDD_MPU

VDD_CORE

VLDO1
VDDS

VDDS_RTC

VLDO2

LS1_OUT

VDDA_ADC

VDDS_OSC

VDDS_PLL_DDR

VDDS_PLL_MPU

VDDS_PLL_CORE_LCD

VDDS_SRAM_MPU_BB

VDDS_SRAM_CORE_BG

VDDA1P8V_USB0

(1.8v)

(3.3v)

(1.8v)

LS2_OUT
VDDSHVx (3.3V)

VDDA3P3V_USB0
(3.3v)

SCL

SDA

PWR_EN

PGOOD

LDO_PGOOD

nINT

nWAKEUP

I2C0_SCL

I2C0_SDA

PMIC_PWR_EN

PWRONRSTN

RTC_PWRONRSTN

EXTINTn

EXT_WAKEUP

DDR_D8 – DDR_D15 DQU0 – DQU7
8

DDR_DQM1

DDR_DQS1

DDR_DQSn1

DMU

DQSU

DQSU#

DDR_D0 – DDR_D7 DQL0 – DQL7
8

DDR_DQM0

DDR_DQS0

DDR_DQSn

0

DDR_CLK

DDR_CLKn

DDR_ODT

DDR_CSn0

DDR_BA0

DDR_BA1

DDR_BA2

DML

DQSL

DQSL#

CK

CK#

ODT

CS#

BA0

BA1

BA2

DDR_A0 – DDR_A15 A0 – A15
15

DDR_CASn

DDR_RASn

DDR_Wen

DDR_CKE

DDR_RESE

Tn

CAS#

RAS#

WE#

CKE

RESET#

ZQ

DDR_VRE

F

DDR_VREF

DQ

VREFCA
DDR_VTP

IN

EN GN

D

OUT

ADJ/BY

P

(SYS)
(3.3V)

TPS65217C

AM335x

DDR3

TL5209

Microprocessor Subsystem

How can we simplify this complexity?

Processor

Standard BGA

Memory =

System-in-Package

+

Attached Die Discrete Components

+

Substrate

+

Pins

What is System-in-Package

System-In-Package (SiP) – Integrates Best of All Processes

High Low

Low High

T
ra

n
sisto

r D
e
n
sity

RF

Processor

Memory

Power

Sensor

Analog

SoC – Compromise in all Areas

RF
Power

Analog

Sensors

Memory

Processors

Clock Frequency
P

o
w

e
r

D
is

s
ip

a
ti
o
n

Voltage

Why Can’t We Just Use an SoC?

OSD3358 SiP Integration

1130 mm2

BeagleBone Black Board

OSD3358

TI Sitara AM335x

Cortex-A8

1GHz

DDR3 SDRAM

800MHz

TI TL5209 LDO

3.3V Out

TI TPS65217C PMIC

Vin: Battery, 5VDC, USB

Vout: 1.8V, 3.3V, Sys_Vout

All Needed Resistors,

Capacitors, and

Inductors

OSD3358 SiP

6 Layer Substrate

Manufactured SiP

Cross-Section SEM Picture of SiP

A Closer Look at a SiP

PocketBeagle

▪ http://bbb.io/pocket

▪ Forums: http://bbb.io/discuss

▪ News: http://bbb.io/news

▪ Based on Octavo Systems OSD3358-SM SiP

▪ ARM Cortex-A8 @ 1-GHz

▪ 512 MB DDRs RAM integrated

▪ ARM Cortex-M3

▪ 2×200-MHz RISC Programmable Real-time Units (PRU)

▪ Integrated power management

▪ Connectivity

▪ Bootable microSD card slot

▪ High speed USB 2.0 OTG (host/client) control signals

▪ Dual 36-pin expansion headers

▪ 8 analog inputs (6 @ 1.8V and 2 @ 3.3V)

▪ 44 digital GPIOs

▪ 3 UARTS

▪ 2 I2C

▪ 2 SPI

▪ 4 PWM

▪ 2 QEP

▪ 2 CAN

▪ $25

56mm x 35mm x 5mm

http://bbb.io/pocket
http://bbb.io/discuss
http://bbb.io/news

PocketBeagle Block Diagram

OSD335x-SM SiP

Contains:

AM3358

TPS65217C

TL5209

EEPROM

JTAG

GPIO

MMC0

USB0

PocketCape P2 Signals

PocketCape P1 Signals

5 Volts
µUSB Host

Connector

µSD Card

Connector

User I/O:

4 LEDs

PocketCape Header (P1)

JTAG

Pads

PocketCape Header (P2)

User I/O:

PWR PB

PocketBeagle Schematics

Simplified Layout

All Signals Escaped in a Single Layer

 6 mil Trace Width

 6 mil Space

All Power Domains and Internal

Signals located in the center for easy

connection

https://octavosystems.com/app_notes/osd335x-sm-layout-guide/

PocketBeagle Layout

▪ Open Source Schematics & Layout

▪ 4 layers PCB

▪ 6 mil trace / 6 mil space

▪ 15 mil drill / 25 mil via

Simplified Board Bring Up Process

▪ Hardware Bring Up

▪ Verify Power Isolation (ie your power rails are not shorted to ground – Don’t release the magic smoke)

▪ Software Bring Up

▪ Download Latest Image from BeagleBoard.org

▪ Modify the device tree to meet your needs

▪ Power up the board and check that everything boots properly

▪ You don’t worry about

▪ Bad voltages to the processor or DDR

▪ DDR not working

Modifying Your Device Tree

▪ Development boards provide good device tree infrastructure

▪ Majority of your device tree is already done for you

▪ Only update the items that are different for your board

▪ Many examples to mine for information / help

▪ https://github.com/RobertCNelson/dtb-rebuilder

▪ Prototyping can be done with device tree overlay

▪ Allows testing on your SBC prototyping board

https://github.com/RobertCNelson/dtb-rebuilder

Using a SiP in your Linux Computer Design Will:

▪ Bring you 100+ components in one package

▪ Makes board design faster, simpler and easier to add your own new features

▪ Ensures easy board bring-up

▪ Give you the heart of the Computer Hardware in a single BGA package

▪ Lower cost PCB, fewer board layers, single sided

▪ Easy to manufacture with - Some have even hand soldered it!

▪ Bridge the gap between Prototype and Production

▪ Open Hardware + Open Source Software

▪ Easy migration from SBC prototyping board to your custom PCB

Thank You
For more information come to our table at ELC Technical Showcase

