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Basics of RISC V  ISA

l RV32I -->Base Integer Instruction Set, 32-bit
l RV32E -->Base Integer Instruction Set (embedded), 32-bit, 16 registers
l RV64I -->Base Integer Instruction Set, 64-bit
l RV128I -->Base Integer Instruction Set,128-bit



Basics of RISC V ISA

l Register name       Symbolic name      Description    (32 integer registers)
l x0                            Zero                     Always zero
l x1                             ra                        Return address
l x2                             sp                        Stack pointer
l x3                             gp                         Global pointer
l x4                            tp                        Thread pointer
l x5                            t0                        Temporary / alternate return address
l x6–7                          t1–2                        Temporary
l x8                           s0/fp                    Saved register / frame pointer
l x9                           s1                        Saved register
l x10–11                    a0–1                    Function argument / return value
l x12–17                a2–7                    Function argument
l x18–27                s2–11                    Saved register
l x28–31                    t3–6                        Temporary



RISCV SoC Boards

l Comerical RISC V SoC boards developed by:
l   1. SiFive
l   2. Syntacore
l   3. Andes Technology 
l   4. Greenwaves Technology
l   5. Hex Five
l   6. Western Digital
l   7. Alibaba Group
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Terminology in SiFive Boards

l RISC V - SiFive Board Terminology: 
l  1. CSR ->  Control Status Register Instructions
l  2. Hart ID ->  Hardware Thread ID (CPU ID)
l  3. Scratch ->  Scratch register for supervisor trap   handlers
l  4. Scall ->  Make a request to the operating system  environment
l  5. Scause -> Supervisor Cause Register
l  6. mhartid-> hardware thread id
l  



Terminology in SiFive Boards

l         7. mret -> return from trap in M-mode 
l  8. PAGE_OFFSET -> First address of the first page of memory
l  9. stvec -> Supervisor Trap Vector Base Address Register
l                                       10. sret -> return from traps in s-mode
l                                       11. sfence.vma -> Synchronize updates memory-management data 
l                                                                     structures with current execution
l                                       12. XLEN-1 ->   Read only register
l                                       13. PMP ->         Physical Memory Protection 



Booting SiFive Kernel

l             The standard RISC-V privilege model contains four modes:
l                  1. User mode: It supports to run user programs.     
l                  2. Supervisor mode:  It supports to run Linux.
l                  3. Hypervisor mode: It is currently left unspecified.
l                  4. Machine mode: It is the lowest protection mode, 
l                       and is meant to run  the machine-specific firmware that may be 
l                        microcode on other machines 



Booting SiFive Kernel

SiFive boards uses BBL as boot loader.  
BBL is developed with support of Device Tree & SBI
1. Device Tree usage: The details of the underlying hardware are 
     described by a device tree, 
     a. specifies the memory map 
     b. configuration of all the harts in the system  
     c. statically allocated devices are attached.
2. SBI usage: Allows to write an interface provided by a lower level of 
the privilege stack without the hardware complexity of adding a bunch of 
emulation instructions.



Booting SiFive Kernel

l Bbl's entry point running in machine mode. 
l It is passed a device tree from the prior boot loader stage, and performs 
l   the following steps:
l One hart is selected to be the main hart.
l The other harts are put to sleep until bbl is ready to transfer control 
l to Linux, at which point they will all be woken up and enter Linux around 
l the same time.



Booting SiFive Kernel

l                   All the other harts are woken up so they can setup their PMP,
l                   trap handlers and enter supervisor mode.
l                  The mhartid CSR is read so Linux can be passed a 
l                   unique per-hart identifier
l                  A PMP (Physical Memory Protection) is set up to allow supervisor mode 
l                  to access all of memory.
l                  Machine mode trap handlers, including a machine mode stack, is set up. 
l                  bbl's machine mode code needs to handle both unimplemented
l                  Instructions and machine-mode interrupts.



Booting SiFive Kernel 

l The processor executes a mret to jump from machine mode to 
l     supervisor mode
l bbl jumps to the start of its payload, which in this case is Linux.



Early boot in SiFive Boards

l                When Linux boots, it expects the system in below state: 
l               1. a0 contains unique per-hart id, map this hart ID to Linux CPU IDs.
l               2. a1 contains a pointer to the device  tree,represented as a binary 
l                  flattened device tree 
l              3. Memory is identity mapped.
l              4. The kernel's ELF image has been loaded, with all the various segments
l                   at their addresses.



Early boot in SiFive Boards

      Hart Id specification:   
           -> In Early boot, RISC-V systems boot harts in an arbitrary (Random) order at           
              arbitrary times, while Linux expects a single hart to boot first and then wake up 
              all other harts. 
l        -> This is managed using the "hart lottery" & it is short  AMO-based sequence
l           that picks the first hart to  boot. 
l        -> The rest of the harts spin, waiting for Linux to boot  far enough. 



Early boot in SiFive Boards

l RISC V Linux early boot process:
l -> A linear mapping of all physical memory is set up, with PAGE_OFFSET 
l       as the  offset.
l ->  Paging is enabled
l -> The C runtime is set up, which includes the stack and global pointers.
l -> A spin-only trap vector is set up that catches any errors early in 
l     the boot process.
l -> start_kernel is called to enter the standard Linux boot  process



setup_arch in SiFive

 On RISC-V systems, setup_arch perform the following operations:
l   Enable the EARLY_PRINTK console, if the SBI console driver is enabled. 
l   The kernel command line is parsed & the early arch-specific options 
l          are enabled
l    The device tree's memory map is parsed &  used to find the kernel 
l           Image's memory block which is marked as reserved.



setup_arch in SiFive

l Early printk support:
l  



setup_arch in SiFive

l Memory Normal zone init:
l  



setup_arch in SiFive

l Hwcap decides which ISA it should take  



SMP init in SiFive Linux

l Hart lottery procedure: 
l task_struct with kernel's tp (thread pointer) variable and a stack.
l Assmbley Code:
l   .Lsecondary_start:
l         li a1, CONFIG_NR_CPUS
l         bgeu a0, a1, .Lsecondary_park
l         /* Set trap vector to spin forever to help debug */
l         la a3, .Lsecondary_park
l         csrw stvec, a3
l         slli a3, a0, LGREG
l         la a1, __cpu_up_stack_pointer
l         la a2, __cpu_up_task_pointer
l         add a1, a3, a1
l         add a2, a3, a2



SMP init in SiFive Linux

 /*      This hart didn't win the lottery, so we wait for the winning hart to
l          * get far enough along the boot process that it should continue. */         

 Lwait_for_cpu_up:
l         REG_L sp, (a1)
l         REG_L tp, (a2)
l         beqz sp, .Lwait_for_cpu_up
l         beqz tp, .Lwait_for_cpu_up
l         fence
l         /* Enable virtual memory and relocate to virtual address */
l         call relocate
l         tail smp_callin

 This leaves the __cpu_up function, which boots a target hard by ID, 
 also to be fairly simple:



SMP init in SiFive Linux

l Int __cpu_up(unsigned int cpu, struct task_struct *tidle)
l {       
l       tidle->thread_info.cpu = cpu;
l         /*  On RISC-V systems, all harts boot on their own accord.  Our _start
l          * selects the first hart to boot the kernel and causes the remainder
l          * of the harts to spin in a loop waiting for their stack pointer to be
l          * setup by that main hart. Writing __cpu_up_stack_pointer signals to
l          * the spinning harts that they can continue the boot process.
l          */
l         smp_mb();
l         __cpu_up_stack_pointer[cpu] = task_stack_page(tidle) + THREAD_SIZE;
l         __cpu_up_task_pointer[cpu] = tidle;
l         while (!cpu_online(cpu))
l                 cpu_relax();       
l return 0;
l }



Shut Down using SBI

l sbi_shutdown is called to inform the machine-mode code to terminate.
l File: 
l    riscv-pk/machine/mtrap.c



Traps in SiFive Kernel

l        Traps on RISC-V Systems:
l        The RISC-V supervisor specification set by writing stvec CSR.
l        The only way to transfer control to the kernel is via this entry point.
l        Effects of taking a trap are change the PC,the exception PC and 
l         exception cause CSRs, and the privilege mode.
l        The way to leave the kernel is by executing the sret instruction. 
l        The effect of taking a trap is the privilege mode change & the PC is 
l         reset to the exception PC CSR's value. 



Traps in SiFive Kernel

l The RISC-V ISA uses sscratch CSR. 
l This CSR provides a single XLEN-sized save region & all software context 
l switching implementations, use this register  whatever extra information is 
l actually required to make the context switch.



Traps in SiFive Kernel

 handle_exception, the Trap Entry Point
 Context switching on RISC-V systems are handled by the 
  supervisor mode software, 

l         the hardware enters the kernel at one single trap entry point and
l         the supervisor-mode software determines how to handle the trap. 
l         There are two categories of traps defined by the RISC-V ISA:
l         1. Interrupts: These are asynchronous. RISC-V defines a software interrupt, 
l                            a timer interrupt, and an external interrupt.
l          2. Exceptions: These are synchronous. RISC-V defines exceptions to 
l                      handle instruction, load, store, and AMO access faults; 
l                      environment calls;illegal instructions; and breakpoints.



Traps in SiFive Kernel



Traps in SiFive Kernel

l The trap type is determined by the scause CSR upon entry to the trap handler. 
l Sscratch CSR take care of saving integer registers to the kernel stack,  
l RISC-V delineates interrupts by setting the high bit in scause, 
l which makes it easy to filter those out and handle them.
l Most exceptions result from userspace emitting an scall instruction 
l to begin a system call, check for that condition and handle the system call using 
l Linux's generic system call handling infrastructure.



Timer Interrupt in SiFive Kernel

l The SEE determines a timer interrupt occured with scause and enters the
l  supervisor's trap handler, in Linux it is handle_exception.
l Linux calls do_IRQ to handle the interrupt.
l do_IRQ calls the riscv_intc_irq 
l  (RISC-V interrupt controller driver's interrupt handling function)
l riscv_intc_irq calls riscv_timer_interrupt.
l riscv_timer_interrupt looks for the struct clock_event_device, 
l which will call to handle the timer interrupt. 



Paging & MMU in SiFive 

l Privilege Levels in RISC-V Systems:
l The RISC-V ISA defines a stack of execution environments.
l 1. User-mode software executes in an AEE 
l                   (Application Execution Environment). 
l 2. Supervisor-mode software executes in an SEE 
l                  (Supervisor Execution Environment).
l 3. Hypervisor-mode software executes in an HEE 
l                  (Hypervisor Execution Environment).
l 4. Machine-mode software executes in an MEE 
l                   (Machine Execution Environment) 



Paging & MMU in SiFive

l Pages are 4KB at the leaf node, and it's possible to map large
l  contiguous regions with every level of the page table.
l RV32I-based systems can have up to 34-bit physical addresses
l    with a three level page table.
l RV64I-based systems can have multiple virtual address widths,
l    starting with 39-bit and extending up to 64-bit in increments of 9 bits.
l Mappings must be synchronized via the sfence.vma instruction.



Paging & MMU in SiFive

l There are bits for global mappings, supervisor-only, read/write/execute, 
l    and accessed/dirty.
l The accessed and dirty bits are strongly ordered with respect to accesses 
l   from the same hart.



SiFive Kernel on Qemu 

l https://risc-v-getting-started-guide.readthedocs.io/en/latest/linux-qemu.html

https://risc-v-getting-started-guide.readthedocs.io/en/latest/linux-qemu.html
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l  



Reference

l      RISC V ISA :
l         https://people.eecs.berkeley.edu/~krste/papers/riscv-privileged-v1.9.pdf
l                              
l       SiFive Base Port: 
l          https://www.sifive.com/blog/all-aboard-part-6-booting-a-risc-v-linux-kernel
l        RISC V getting starting guide with QEMU:
l          https://risc-v-getting-started-guide.readthedocs.io/en/latest/linux-qemu.html

https://people.eecs.berkeley.edu/~krste/papers/riscv-privileged-v1.9.pdf
https://www.sifive.com/blog/all-aboard-part-6-booting-a-risc-v-linux-kernel
https://risc-v-getting-started-guide.readthedocs.io/en/latest/linux-qemu.html


Thank you
&

Questions ?
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