
l Base Porting of Linux
Kernel on RISC V
Archiecture

G Satish Kumar

Index

l 1. Basics of RISC V ISA
l 2. RISCV SoC Boards
l 3. Terminology in SiFive Boards
l 4. Booting SiFive Kernel
l 5. Early boot in SiFive Boards
l 6. setup_arch in SiFive

Index

l 7. SMP init in SiFive Kernel
l 8. Shut Down using SBI
l 9. Traps in SiFive Kernel
l 10. Timer Interrupt in SiFive Kernel
l 11. Paging & MMU in SiFive

Basics of RISC V ISA

l RV32I -->Base Integer Instruction Set, 32-bit
l RV32E -->Base Integer Instruction Set (embedded), 32-bit, 16 registers
l RV64I -->Base Integer Instruction Set, 64-bit
l RV128I -->Base Integer Instruction Set,128-bit

Basics of RISC V ISA

l Register name Symbolic name Description (32 integer registers)
l x0 Zero Always zero
l x1 ra Return address
l x2 sp Stack pointer
l x3 gp Global pointer
l x4 tp Thread pointer
l x5 t0 Temporary / alternate return address
l x6–7 t1–2 Temporary
l x8 s0/fp Saved register / frame pointer
l x9 s1 Saved register
l x10–11 a0–1 Function argument / return value
l x12–17 a2–7 Function argument
l x18–27 s2–11 Saved register
l x28–31 t3–6 Temporary

RISCV SoC Boards

l Comerical RISC V SoC boards developed by:
l 1. SiFive
l 2. Syntacore
l 3. Andes Technology
l 4. Greenwaves Technology
l 5. Hex Five
l 6. Western Digital
l 7. Alibaba Group

RISCV SoC Boards

l Comerical RISC V SoC boards developed by:
l 1. SiFive
l 2. Syntacore
l 3. Andes Technology
l 4. Greenwaves Technology
l 5. Hex Five
l 6. Western Digital
l 7. Alibaba Group

Terminology in SiFive Boards

l RISC V - SiFive Board Terminology:
l 1. CSR -> Control Status Register Instructions
l 2. Hart ID -> Hardware Thread ID (CPU ID)
l 3. Scratch -> Scratch register for supervisor trap handlers
l 4. Scall -> Make a request to the operating system environment
l 5. Scause -> Supervisor Cause Register
l 6. mhartid-> hardware thread id
l

Terminology in SiFive Boards

l 7. mret -> return from trap in M-mode
l 8. PAGE_OFFSET -> First address of the first page of memory
l 9. stvec -> Supervisor Trap Vector Base Address Register
l 10. sret -> return from traps in s-mode
l 11. sfence.vma -> Synchronize updates memory-management data
l structures with current execution
l 12. XLEN-1 -> Read only register
l 13. PMP -> Physical Memory Protection

Booting SiFive Kernel

l The standard RISC-V privilege model contains four modes:
l 1. User mode: It supports to run user programs.
l 2. Supervisor mode: It supports to run Linux.
l 3. Hypervisor mode: It is currently left unspecified.
l 4. Machine mode: It is the lowest protection mode,
l and is meant to run the machine-specific firmware that may be
l microcode on other machines

Booting SiFive Kernel

SiFive boards uses BBL as boot loader.
BBL is developed with support of Device Tree & SBI
1. Device Tree usage: The details of the underlying hardware are
 described by a device tree,
 a. specifies the memory map
 b. configuration of all the harts in the system
 c. statically allocated devices are attached.
2. SBI usage: Allows to write an interface provided by a lower level of
the privilege stack without the hardware complexity of adding a bunch of
emulation instructions.

Booting SiFive Kernel

l Bbl's entry point running in machine mode.
l It is passed a device tree from the prior boot loader stage, and performs
l the following steps:
l One hart is selected to be the main hart.
l The other harts are put to sleep until bbl is ready to transfer control
l to Linux, at which point they will all be woken up and enter Linux around
l the same time.

Booting SiFive Kernel

l All the other harts are woken up so they can setup their PMP,
l trap handlers and enter supervisor mode.
l The mhartid CSR is read so Linux can be passed a
l unique per-hart identifier
l A PMP (Physical Memory Protection) is set up to allow supervisor mode
l to access all of memory.
l Machine mode trap handlers, including a machine mode stack, is set up.
l bbl's machine mode code needs to handle both unimplemented
l Instructions and machine-mode interrupts.

Booting SiFive Kernel

l The processor executes a mret to jump from machine mode to
l supervisor mode
l bbl jumps to the start of its payload, which in this case is Linux.

Early boot in SiFive Boards

l When Linux boots, it expects the system in below state:
l 1. a0 contains unique per-hart id, map this hart ID to Linux CPU IDs.
l 2. a1 contains a pointer to the device tree,represented as a binary
l flattened device tree
l 3. Memory is identity mapped.
l 4. The kernel's ELF image has been loaded, with all the various segments
l at their addresses.

Early boot in SiFive Boards

 Hart Id specification:
 -> In Early boot, RISC-V systems boot harts in an arbitrary (Random) order at
 arbitrary times, while Linux expects a single hart to boot first and then wake up
 all other harts.
l -> This is managed using the "hart lottery" & it is short AMO-based sequence
l that picks the first hart to boot.
l -> The rest of the harts spin, waiting for Linux to boot far enough.

Early boot in SiFive Boards

l RISC V Linux early boot process:
l -> A linear mapping of all physical memory is set up, with PAGE_OFFSET
l as the offset.
l -> Paging is enabled
l -> The C runtime is set up, which includes the stack and global pointers.
l -> A spin-only trap vector is set up that catches any errors early in
l the boot process.
l -> start_kernel is called to enter the standard Linux boot process

setup_arch in SiFive

 On RISC-V systems, setup_arch perform the following operations:
l Enable the EARLY_PRINTK console, if the SBI console driver is enabled.
l The kernel command line is parsed & the early arch-specific options
l are enabled
l The device tree's memory map is parsed & used to find the kernel
l Image's memory block which is marked as reserved.

setup_arch in SiFive

l Early printk support:
l

setup_arch in SiFive

l Memory Normal zone init:
l

setup_arch in SiFive

l Hwcap decides which ISA it should take

SMP init in SiFive Linux

l Hart lottery procedure:
l task_struct with kernel's tp (thread pointer) variable and a stack.
l Assmbley Code:
l .Lsecondary_start:
l li a1, CONFIG_NR_CPUS
l bgeu a0, a1, .Lsecondary_park
l /* Set trap vector to spin forever to help debug */
l la a3, .Lsecondary_park
l csrw stvec, a3
l slli a3, a0, LGREG
l la a1, __cpu_up_stack_pointer
l la a2, __cpu_up_task_pointer
l add a1, a3, a1
l add a2, a3, a2

SMP init in SiFive Linux

 /* This hart didn't win the lottery, so we wait for the winning hart to
l * get far enough along the boot process that it should continue. */

 Lwait_for_cpu_up:
l REG_L sp, (a1)
l REG_L tp, (a2)
l beqz sp, .Lwait_for_cpu_up
l beqz tp, .Lwait_for_cpu_up
l fence
l /* Enable virtual memory and relocate to virtual address */
l call relocate
l tail smp_callin

 This leaves the __cpu_up function, which boots a target hard by ID,
 also to be fairly simple:

SMP init in SiFive Linux

l Int __cpu_up(unsigned int cpu, struct task_struct *tidle)
l {
l tidle->thread_info.cpu = cpu;
l /* On RISC-V systems, all harts boot on their own accord. Our _start
l * selects the first hart to boot the kernel and causes the remainder
l * of the harts to spin in a loop waiting for their stack pointer to be
l * setup by that main hart. Writing __cpu_up_stack_pointer signals to
l * the spinning harts that they can continue the boot process.
l */
l smp_mb();
l __cpu_up_stack_pointer[cpu] = task_stack_page(tidle) + THREAD_SIZE;
l __cpu_up_task_pointer[cpu] = tidle;
l while (!cpu_online(cpu))
l cpu_relax();
l return 0;
l }

Shut Down using SBI

l sbi_shutdown is called to inform the machine-mode code to terminate.
l File:
l riscv-pk/machine/mtrap.c

Traps in SiFive Kernel

l Traps on RISC-V Systems:
l The RISC-V supervisor specification set by writing stvec CSR.
l The only way to transfer control to the kernel is via this entry point.
l Effects of taking a trap are change the PC,the exception PC and
l exception cause CSRs, and the privilege mode.
l The way to leave the kernel is by executing the sret instruction.
l The effect of taking a trap is the privilege mode change & the PC is
l reset to the exception PC CSR's value.

Traps in SiFive Kernel

l The RISC-V ISA uses sscratch CSR.
l This CSR provides a single XLEN-sized save region & all software context
l switching implementations, use this register whatever extra information is
l actually required to make the context switch.

Traps in SiFive Kernel

 handle_exception, the Trap Entry Point
 Context switching on RISC-V systems are handled by the
 supervisor mode software,

l the hardware enters the kernel at one single trap entry point and
l the supervisor-mode software determines how to handle the trap.
l There are two categories of traps defined by the RISC-V ISA:
l 1. Interrupts: These are asynchronous. RISC-V defines a software interrupt,
l a timer interrupt, and an external interrupt.
l 2. Exceptions: These are synchronous. RISC-V defines exceptions to
l handle instruction, load, store, and AMO access faults;
l environment calls;illegal instructions; and breakpoints.

Traps in SiFive Kernel

Traps in SiFive Kernel

l The trap type is determined by the scause CSR upon entry to the trap handler.
l Sscratch CSR take care of saving integer registers to the kernel stack,
l RISC-V delineates interrupts by setting the high bit in scause,
l which makes it easy to filter those out and handle them.
l Most exceptions result from userspace emitting an scall instruction
l to begin a system call, check for that condition and handle the system call using
l Linux's generic system call handling infrastructure.

Timer Interrupt in SiFive Kernel

l The SEE determines a timer interrupt occured with scause and enters the
l supervisor's trap handler, in Linux it is handle_exception.
l Linux calls do_IRQ to handle the interrupt.
l do_IRQ calls the riscv_intc_irq
l (RISC-V interrupt controller driver's interrupt handling function)
l riscv_intc_irq calls riscv_timer_interrupt.
l riscv_timer_interrupt looks for the struct clock_event_device,
l which will call to handle the timer interrupt.

Paging & MMU in SiFive

l Privilege Levels in RISC-V Systems:
l The RISC-V ISA defines a stack of execution environments.
l 1. User-mode software executes in an AEE
l (Application Execution Environment).
l 2. Supervisor-mode software executes in an SEE
l (Supervisor Execution Environment).
l 3. Hypervisor-mode software executes in an HEE
l (Hypervisor Execution Environment).
l 4. Machine-mode software executes in an MEE
l (Machine Execution Environment)

Paging & MMU in SiFive

l Pages are 4KB at the leaf node, and it's possible to map large
l contiguous regions with every level of the page table.
l RV32I-based systems can have up to 34-bit physical addresses
l with a three level page table.
l RV64I-based systems can have multiple virtual address widths,
l starting with 39-bit and extending up to 64-bit in increments of 9 bits.
l Mappings must be synchronized via the sfence.vma instruction.

Paging & MMU in SiFive

l There are bits for global mappings, supervisor-only, read/write/execute,
l and accessed/dirty.
l The accessed and dirty bits are strongly ordered with respect to accesses
l from the same hart.

SiFive Kernel on Qemu

l https://risc-v-getting-started-guide.readthedocs.io/en/latest/linux-qemu.html

https://risc-v-getting-started-guide.readthedocs.io/en/latest/linux-qemu.html

l SiFive Kernel on Qemu

l SiFive Kernel on Qemu

l SiFive Kernel on Qemu

l SiFive Kernel on Qemu
l

Reference

l RISC V ISA :
l https://people.eecs.berkeley.edu/~krste/papers/riscv-privileged-v1.9.pdf
l
l SiFive Base Port:
l https://www.sifive.com/blog/all-aboard-part-6-booting-a-risc-v-linux-kernel
l RISC V getting starting guide with QEMU:
l https://risc-v-getting-started-guide.readthedocs.io/en/latest/linux-qemu.html

https://people.eecs.berkeley.edu/~krste/papers/riscv-privileged-v1.9.pdf
https://www.sifive.com/blog/all-aboard-part-6-booting-a-risc-v-linux-kernel
https://risc-v-getting-started-guide.readthedocs.io/en/latest/linux-qemu.html

Thank you
&

Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

