Building Multi-Processor FPGA Systems

Hands-on Tutorial to Using FPGAs and Linux

Chris Martin
Member Technical Staff Embedded Applications

© 2015 Altera Corporation—Public

2

Agenda

«
«
«

Introduction
Problem: How to Integrate Multi-Processor Subsystems
Why é

I Why would you do this?

I Why use FPGASs?
Lab 1: Getting Started - Booting Linux and Boot-strapping NIOS
Building Hardware: FPGA Hardware Tools & Build Flow
Break (10 minutes)
Lab 2: Inter-Processor Communication and Shared Peripherals
Building/Debugging NIOS Software: Software Tools & Build Flow
Lab 3: Locking and Tetris
Building/Debugging ARM Software: Software Tools & Build Flow
References
Q&A1 All through out.

AAAAAAAAA

© 2015 Altera Corporation—Public AIEIEA -

3

The Problem 1 Integrating Multi-Processor Subsystems

e Given a system with
_ y Subsystem
multiple processor sub- 1
systems, these

architecture decisions

must be considered:

® [nter-processor
communication

e Partitioning/sharing Subsystem
Peripherals (locking required) 2
e Bandwidth & Latency

Requirements Periph 1 Periph 2 Periph 3

D
© 2015 Altera Corporation—Public A\“] =)/A *

Why Do We Need to Integrate Multi-Processor
Subsystems?

e May have inherited processor subsystem
from another development team or 3™

party
I Risk Mitigation by reducing change

e Fulfill Latency and Bandwidth
Requirements

I Real-time Considerations
i If main processor not Real-Time enabled,
can add a real-time processor subsystem
e Design partition / Sandboxing
i Break the system into smaller subsystems
to service task
I Smaller task can be designed easily
e |everage Software Resources

I Sometimes problem is resolved in less time
by Processor/Software rather than
Hardware design

I Sequencers, State-machines

© 2015 Altera Corporation—Public AIHEA -

Why do we want to integrate with FPGA?
(or rather, HOW can FPGASs help?)

® Huge number of processor Simple Multiprocessor System
subsystems can be implemented A

e Bandwidth & Latency can be
tailored

I Addresses Real-time aspects of
System Solution

I FPGA logic has flexible interconnect

I Trade Data width with clock
frequency with latency

e Experimentation

I Allows you to experiment changing
microprocessor subsystem

e And, why is Altera involved
hardware designs with Embedded

1 Altera FPGA under-the-hood

T However: Generic Linux
interfaces used and can be
applied in any Linux system.

5 © 2015 Altera Corporation—Public AEIEA .

Why is Altera Involved with Embedded Linux?

120,000 - .
B \With Embedded Processor
100,000 - ® \Without Embedded Processor
@
S | 80,000 -
U) 0
S | 60,000 - 0%
D
[
0O | 40,000 -
20,000 -
0 -
O & N 4 & X O O A D O 0 N A M
P O O " LN AN NN N
NSNS SR S S S S DS S S DS SO DS
Source: Gartner September 2010
« More than 50% of FPGA designs include an embedded processor, and growing.
« Many embedded designs using Linux
« Open-source re-use.
I Altera Linux Development Team actively contributes to Linux Kernel
6 © 2015 Altera Corporation—Public AEI-E%A "

SoCKit Board Architecture Overview

A Lab focus

7

Transciever Link

LTC Connector
to SPII2C Devices

USB Micro-B

UART
DDR3
LEDs e 5CSXFCBD6F31 <, grsey. U L U il etemet

10/100/1000
SDRAM x32 1024 MB
Buttons — M | @ USB 200TG

Micron DDR3L
SDRAM x32 1024 MB

EEBEE uﬂa

Lz

© 2015 Altera Corporation—Public AIIIEA .

SoC/FPGA Hardware Architecture Overview

Bridges
Data Width

configurable

A FPGA

8

42K Logic
Macros

Using no more

than 14%

© 2015 Altera Corporation—Public

A ARM-to-FPGA

l

{ AXI Bridge %
HPS2FPGA

“kE

AXI Bridge
LWHPS2FPGA

v

PN

AXI Bridge
FPGA2HPS

e

T 32/64/128 V 32

32/64/128

FPGA Fabric

NnSoft Logl

C

—|_SYSID |
—~_SPo_|
2, luvos

mnﬁﬁn A\

Lab 1. Getting Started
Booting Linux and Boot-strapping NIOS

« Topics Covered:
I Configuring FPGA from SD/MMC and U-Boot
I Booting Linux on ARM Cortex-A9
I Configuring Device Tree
I Resetting and Booting NIOS Processor
I Building and compiling simple Linux Application
« Key Example Code Provided:
I C code for downloading NIOS code and resetting NIOS from ARM
I Using U-boot to set ARM peripheral security bits

« Full step-by-step instructions are included in lab manual.

9 © 2015 Altera Corporation—Public AEIE%A .

Lab 1: Hardware Design Overview

« NIOS Subsystem
X
.
'

« ARM Subsystem

10 ©2015Altera Corporation—Public

1 NIOS Gen 2 processor

64k combined instruction/data
RAM (On-Chip RAM)

GPIO peripheral

2 Cortex-A9 (only using 1)
DDR3 External Memory
SD/MMC Peripheral
UART Peripheral

11

Labl: Programmer View - Processor Address Maps

NIOS ARM Cortex-A9
OxFFCO_2000 ARM UART OxFFCO0_2000 UART
0x0003 0000 GPIO (LEDs) 0xC003_0000 GPIO (LEDSs)
0x0002_0000 System 1D 0xC002_0000 System 1D
0x0000_0000 On-chip RAM 0xC000_0000 On-chip RAM
©2015 Alera Corporation—Public /ANOTS RYA),

Lab 1: Peripheral Registers

Peripheral | Address | Access | Bit Definitions
Offset

Sys ID [31:0] T System ID.
Lab Default = 0x00001abl
GPIO 0x0 R/W [31:0] T Drive GPIO output.

Lab Uses for LED control, push button status
and NIOS processor resets (from ARM).
[3:0] - LED 0-3 Control.
006 = WAMEDRNf
[4] T NIOS 0 Reset
[5] T NIOS 1 Reset
[1:0] T Push Button Status

UART Ox14 RO Line Status Register
[5] T TX FIFO Empty
[0] T Data Ready (RX FIFO not-Empty)

UART 0x30 R/W Shadow Receive Buffer Register
[7:0] T RX character from serial input
UART 0x34 R/W Shadow Transmit Register

[7:0] T TX character to serial output
P

12

Lab 1: Processor Resets Via Standard Linux GPIO

Interface int main(int argc , char* argv)
{

int fd, gpio =168;
char buf [MAX_BUF];

fd = open("/sys/class/ gpio /export", O_WRONLY);
sprintf (buf , "%d", gpio);
write(fd, buf, strlen (buf));

A NIOS resets close(fd):

connected to GPIO

sprintf (buf , "/sys/class/ gpio / gpio%d /direction”, gpio);

~

A GPIO driver uses fd =open(buf , O_WRONLY);

write(fd , "out", 3); [* write(fd, "in", 2); */

/sysiclass/gpio cose(fd)

Interface

sprintf (buf , "/sys/class/ gpio / gpio%d /value", gpio);
fd =open(buf , O _WRONLY);

write(fd , "1", 1); I* write(fd , "0", 1); */

close(fd);

fd = open("/sys/class/ gpio / unexport ", O_WRONLY);
sprintf (buf , "%d", gpio);

write(fd, buf, strlen (buf));

close(fd);

13 ©2015Altera Corporation—Public

Lab 1: Loading External Processor Code
Via Standard Linux shared memory (mmap)

fd =open("/ dev/ mem, O_RDWR);

~ load_address = mmagNULL, 0x10000,

A N IOS RAM add ress PROT_READ|PROT_WRITE, MAP_SHAREDfd , 0xcO000000);
accessed via mmap()

A Can be Shared W|th load_size = sizeof (nios_code)/ sizeof (nios_code [0]);
other processes

" R/W durin Ioad for(i=0; i < load_size ;i ++)

A {

A Read-onl gprotect'on “(load_address+i)= nios_code [i]

A -only |)
after load

mprotect (load_address , 0x10000, PROT_REAR

munmap load_address , 0x10000);

14 ©2015 Altera Corporation—Public

®

Post-Lab 1 Additional Topics

Hardware Design Flow and FPGA Boot with U-boot and SD/MMC

15 © 2015 Altera Corporation—Public

16

Building Hardware:
Qsys (Hardware System Design Tool) User Interface

Interfaces Exported
In/out of system

Connections between
cores

© 2015 Altera Corporation—Public AIIIEA .

