
Building Multi-Processor FPGA Systems
Hands-on Tutorial to Using FPGAs and Linux

Chris Martin

Member Technical Staff Embedded Applications

Agenda

2

Introduction

Problem: How to Integrate Multi-Processor Subsystems

Whyé

ïWhy would you do this?

ïWhy use FPGAs?

Lab 1: Getting Started - Booting Linux and Boot-strapping NIOS

Building Hardware: FPGA Hardware Tools & Build Flow

Break (10 minutes)

Lab 2: Inter-Processor Communication and Shared Peripherals

Building/Debugging NIOS Software: Software Tools & Build Flow

Lab 3: Locking and Tetris

Building/Debugging ARM Software: Software Tools & Build Flow

References

Q&A ï All through out.

Subsystem

1

3

The Problem ï Integrating Multi-Processor Subsystems

Given a system with

multiple processor sub-

systems, these

architecture decisions

must be considered:

Inter-processor

communication

Partitioning/sharing

Peripherals (locking required)

Bandwidth & Latency

Requirements

Processor

Periph 1 Periph 2 Periph 3

Subsystem

2 Processor

Periph 1 Periph 2 Periph 3

4

Why Do We Need to Integrate Multi-Processor

Subsystems?

May have inherited processor subsystem
from another development team or 3rd
party

ï Risk Mitigation by reducing change

Fulfill Latency and Bandwidth
Requirements

ï Real-time Considerations

ï If main processor not Real-Time enabled,

can add a real-time processor subsystem

Design partition / Sandboxing

ï Break the system into smaller subsystems

to service task

ï Smaller task can be designed easily

Leverage Software Resources

ï Sometimes problem is resolved in less time

by Processor/Software rather than

Hardware design

ï Sequencers, State-machines

5

Why do we want to integrate with FPGA?

(or rather, HOW can FPGAs help?)

Huge number of processor
subsystems can be implemented

Bandwidth & Latency can be
tailored

ï Addresses Real-time aspects of

System Solution

ï FPGA logic has flexible interconnect

ï Trade Data width with clock

frequency with latency

Experimentation

ï Allows you to experiment changing

microprocessor subsystem

hardware designs

ï Altera FPGA under-the-hood

ï However: Generic Linux

interfaces used and can be

applied in any Linux system.

NIOS

ARM

A

Peripheral

N

Peripheral

Shared

Peripheral
Mailbox

Simple Multiprocessor System

And, why is Altera involved

with Embedded Linuxé

Why is Altera Involved with Embedded Linux?

6

More than 50% of FPGA designs include an embedded processor, and growing.

Many embedded designs using Linux

Open-source re-use.

ï Altera Linux Development Team actively contributes to Linux Kernel

0

20,000

40,000

60,000

80,000

100,000

120,000

Without CPU With CPU

Source: Gartner September 2010

50%

D
e

s
ig

n
 S

ta
rt

s

With Embedded Processor

Without Embedded Processor

SoCKit Board Architecture Overview

Â Lab focus
- UART

- DDR3

- LEDs

- Buttons

7

FPGA Fabric

ñSoft Logicò

SoC/FPGA Hardware Architecture Overview

Â ARM-to-FPGA

Bridges

- Data Width
configurable

Â FPGA
- 42K Logic

Macros

- Using no more
than 14%

8

A9

I$ D$

A9

I$ D$

L2

EMIF

DDR

ROM

RAM

DMA

UART

SD/MMC

AXI Bridge

FPGA2HPS
AXI Bridge

HPS2FPGA

AXI Bridge

LWHPS2FPGA

NIOS

RAM
GPIO

SYS ID

32 32/64/128

32

32/64/128

Lab 1: Getting Started

Booting Linux and Boot-strapping NIOS

9

Topics Covered:
ï Configuring FPGA from SD/MMC and U-Boot

ï Booting Linux on ARM Cortex-A9

ï Configuring Device Tree

ï Resetting and Booting NIOS Processor

ï Building and compiling simple Linux Application

Key Example Code Provided:
ï C code for downloading NIOS code and resetting NIOS from ARM

ï Using U-boot to set ARM peripheral security bits

Full step-by-step instructions are included in lab manual.

Lab 1: Hardware Design Overview

10

NIOS Subsystem
ï 1 NIOS Gen 2 processor

ï 64k combined instruction/data
RAM (On-Chip RAM)

ï GPIO peripheral

ARM Subsystem
ï 2 Cortex-A9 (only using 1)

ï DDR3 External Memory

ï SD/MMC Peripheral

ï UART Peripheral

Shared Peripherals Dedicated Peripherals

Subsystem 1

Subsystem 2

Cortex-A9

GPIO

UART

SD/MMC

NIOS 0

RAM

EMIF

Lab1: Programmer View - Processor Address Maps

Address Base Peripheral

0xFFC0_2000 ARM UART

0x0003_0000 GPIO (LEDs)

0x0002_0000 System ID

0x0000_0000 On-chip RAM

Address Base Peripheral

0xFFC0_2000 UART

0xC003_0000 GPIO (LEDs)

0xC002_0000 System ID

0xC000_0000 On-chip RAM

11

NIOS ARM Cortex-A9

Lab 1: Peripheral Registers

Peripheral Address

Offset

Access Bit Definitions

Sys ID 0x0 RO [31:0] ï System ID.

Lab Default = 0x00001ab1

GPIO 0x0 R/W [31:0] ï Drive GPIO output.

Lab Uses for LED control, push button status

and NIOS processor resets (from ARM).

[3:0] - LED 0-3 Control.

 ó0ô = LED off . ó1ô = LED on

[4] ï NIOS 0 Reset

[5] ï NIOS 1 Reset

[1:0] ï Push Button Status

UART 0x14 RO Line Status Register

[5] ï TX FIFO Empty

[0] ï Data Ready (RX FIFO not-Empty)

UART

0x30 R/W Shadow Receive Buffer Register

[7:0] ï RX character from serial input

UART

0x34 R/W Shadow Transmit Register

[7:0] ï TX character to serial output
12

Lab 1: Processor Resets Via Standard Linux GPIO

Interface

Â NIOS resets

connected to GPIO

Â GPIO driver uses

/sys/class/gpio

interface

int main(int argc , char** argv)

{

 int fd , gpio =168;

 char buf [MAX_BUF];

 /* Export: echo ### > /sys/class/ gpio /export */

 fd = open("/sys/class/ gpio /export", O_WRONLY);

 sprintf (buf , "%d", gpio);

 write(fd , buf , strlen (buf));

 close(fd);

 /* Set direction to Out: */

 /* echo " outñ > /sys/class/gpio / gpio ###/direction */

 sprintf (buf , "/sys/class/ gpio / gpio%d /direction", gpio);

 fd = open(buf , O_WRONLY);

 write(fd , "out", 3); /* write(fd , "in", 2); */

 close(fd);

 /* Set GPIO Output High or Low */

 /* echo 1 > / sys/class/ gpio / gpio ###/value */

 sprintf (buf , "/sys/class/ gpio / gpio%d /value", gpio);

 fd = open(buf , O_WRONLY);

 write(fd , "1", 1); /* write(fd , "0", 1); */

 close(fd);

 /* Unexport : echo ### > /sys/class/ gpio / unexport */

 fd = open("/sys/class/ gpio / unexport ", O_WRONLY);

 sprintf (buf , "%d", gpio);

 write(fd , buf , strlen (buf));

 close(fd);

}
13

Lab 1: Loading External Processor Code

Via Standard Linux shared memory (mmap)

Â NIOS RAM address

accessed via mmap()

Â Can be shared with

other processes

Â R/W during load

Â Read-only protection

after load

/* Map Physical address of NIOS RAM

 to virtual address segment

 with Read/Write Access */

fd = open("/ dev / mem", O_RDWR);

load_address = mmap(NULL, 0x10000,

 PROT_READ|PROT_WRITE, MAP_SHARED, fd , 0xc0000000);

/* Set size of code to load */

load_size = sizeof (nios_code)/ sizeof (nios_code [0]);

/* Load NIOS Code */

for(i =0; i < load_size ; i ++)

{

 *(load_address+i) = nios_code [i];

}

/* Set load address segment to Read - Only */

mprotect (load_address , 0x10000 , PROT_READ);

/* Un - map load address segment */

munmap(load_address , 0x10000);

14

Post-Lab 1 Additional Topics

Hardware Design Flow and FPGA Boot with U-boot and SD/MMC

15

Building Hardware:

Qsys (Hardware System Design Tool) User Interface

16

Connections between
cores

Interfaces Exported
In/out of system

