
Upstream First is Our Principle
- Toward Super Long-Term Support -

Chris Paterson @ Renesas

Masashi Kudo @ Cybertrust Japan

October 26th , 2020

About US

• Masashi Kudo <masashi.kudo@miraclelinux.com>
• Working for Cybertrust Japan Co., Ltd.
• Acted as OpenDaylight (LF Networking) Ambassador
• CIP Kernel Team Chair

• Chris Paterson <chris.paterson2@renesas.com>
• Working for Renesas Electronics Europe GmbH
• CIP Testing Working Group Chair

2

mailto:masashi.kudo@miraclelinux.com
mailto:chris.paterson2@renesas.com

Table of Contents

What is CIP ?

Upstream First

CIP Kernel Team Activities

CIP Automated Testing

Summary

3

What is CIP?

Speed and efficiency: focus on differentiating parts

Operating

System
Cloud

frameworks
Cloud

orchestration

IoT

backend

HMI frameworks

Virtualization

Monitoring

Stream

processing
Data

collection

App

isolation

Augmented

reality platforms

Mobile

Device

Middleware

Communication

Enterprise IT

interfaces

Cloud

Domain-specific frameworks

Proprietary

application

Proprietary

application

Operating

System

Proprietary

application,

proprietary

operating system

Differentiating
Why to buy
the product

Commodity
Invisible for
customers

Up to 2000

2000 – 2015

2016 and beyond

Handling increasing complexity with
constant development resources

Join forces by leveraging commodity components,
partnering, and adapting open source software.

Open source software ensures long-term availability,
flexibility, and maintainability without vendor lock-in.

5

Facts and Issues: Silo Development

Facts
• Millions or trillions Industrial devices, including smart devices

• Similar software components (e.g. Linux)

• Industrial IoT requirements
• Security

• Sustainability

• Industrial-gradeness

Issues
• A lot of products have to meet industrial requirements

• Same development and maintenance efforts spent
by many companies or even business units

• No common solution for base building blocks

picture taken from Pinterest
https://www.pinterest.de/pin/554646510344033382/

6

https://www.pinterest.de/pin/554646510344033382/

CIP is the Solution

Establishing an

Open Source Base Layer

of industrial-grade software to

enable the use and

implementation of software

building blocks for

Civil Infrastructure Systems

What is “Open Source Base Layer (OSBL)”?

CIP Core packages
(tens)

CIP SLTS kernel
(10+ years maintenance, based on LTS kernels)

additional packages
(hundreds)

CIP Civil Infrastructure Platform Project (https://www.cip-project.org/) SLTS Super Long Term Support

OSBL

system-specific middleware and applications

8

https://www.cip-project.org/

CIP governance structure and projects

Technical Steering Committee (TSC)

SLTS
kernel

Real-
time Testing CIP Core

Security
WG(*)

Software
update WG(*)

1 32 4 5 6 (*): Workgroup

Governing Board (GB)

✔ ✔ ✔ ✔ ✔ Security

✔ ✔ ✔ ✔ Sustainability

✔ ✔ ✔ ✔ ✔ ✔ Industrial grade

CIP Projects and its scopes
9

The backbone of CIP are the member companies

10

Developers,
maintainers

€
¥

$
£

Budget

Open Source Projects (Upstream work)

Contribution &
usage / integration

Optional: funding of
selected projects

Mapping CIP into the company

OSS Open Source Softw are QA quality ssurance SDK softw are development kit

CIP Core Packages
(tens)

CIP Kernel
(10+ years maintenance)

additional
packages
(hundreds)

Kernel and base packages, SDK, Build chain, QA

Corporate

team / central

project

Domain-specific

extensions

Companies /

Divisions

Domain-specific

extensions
…

Business

Units /

Products

Firmware Update Security Hardening Container Runtime …

Up to 70% effort reduction achievable for OSS license clearing and vulnerability monitoring,

kernel and package maintenance, application adaptation and testing for an individual product.

“distribution“

11

Upstream
First

Development Models

13

“Upstream First” Model

Only allows patch commits if those
patches are already in the upstream.

Upstream The
Project

“Own Community” Model

Upstream

Branches its base from upstream
and evolves by its own.

The Project

Commit Counts per LTS

14
Note: If a patch has an original patch, the date of the patch is that of the original one.

0

400

800

1200
LTS 5.4

LTS 4.19

LTS 4.14LTS 4.9

LTS 4.4

Year/Month

Commit Counts
per Month

Collaborative development with other OSS projects

15

Upstream
Projects LT

S
mainline

1
Upstream first

2 Use the upstream code

3 Integrate

CIP Open Source Base Layer (OSBL)

Contribute, Collaborate and use by CIP

meta-
debian

SWUpdat
e

CIP Core packages

CIP kernel

additional
packages

middleware and
applications

How CIP Artifacts can be used

16

Debian Source
Packages

Binary Packages (deb)

Repository

Build

Install

apt/apt-get

referencing

Compile and optimize for
embedded devices

Apply CIP Linux

Build framework from
source code for embedded

systems

CIP User

Yocto/Poky

CIP Source
Packages

Debian User

source packages
CVE patches

CIP
Kernel Team

Activities

CIP Kernel Team

Primary Goal
• Provide CIP SLTS kernels with ten+ years maintenance period by fixing versions

to fulfill the required level of reliability, sustainability, and security

Team Members
• Masashi Kudo - Chairperson

• Nobuhiro Iwamatsu - Kernel Maintainer

• Pavel Machek - Kernel Maintainer

• Ben Hutchings - Kernel Mentor

• Chen-Yu Tsai - Kernel Developer

18

CIP SLTS kernel development

Mainline / LTS LTS kernel

Kernel Team

Developers

19

Kernel

Releases

Patch Review CVE Check

1 2

4

Contributions

3

Stable Patches Review

20

1

Stable Patch Review
• Reviews for -rc

• Review results are posted to ML
• Reviews for stable releases

CVE Check

21

Mainline/

LTS

cip-kernel-sec

Gather kernel CVE Information

cip-kernel-sec I/F

Analyse CVEs to determine

necessities for contributions

2

cip-kernel-config

cip-kernel-sec

• Tracks the status of security issues, identified by CVE ID, in mainline,
stable, and other configured branches.

22

Mainline/LTS

cip-kernel-sec

2

cip-kernel-config

• Necessity of contributions (backporting) is determined to be fixed
base on kernel configurations provided by CIP members

23

2

Contributions to LTS

LTS 4.4 LTS 4.19LTS 4.14LTS 4.9 LTS 5.4

+12

+15

+16

+17

+16

24

June

1599
October

1685

3

Contributions to LTS - Details

25

v4.4.238 v4.9.238 v4.14.200 v4.19.149 v5.4.69 TOTAL
Suggested-by: 1 1 1 2 1 6

Reported-by: 44 35 29 16 6 130

Signed-off-by: 440 334 149 88 41 1052

Debugged-by: 1 1 2

Author: 80 83 55 39 23 280

Acked-by: 26 29 33 44 13 145

Reviewed-by: 2 4 10 7 6 29

Tested-by: 4 4 6 3 17

Cc: 104 97 72 51 28 352

TOTAL 618 496 289 195 87 1685

as of October 6, 2020

Note: There could be multiple contributions by a same personnel in one commit. such duplicates are
eliminated in total numbers. Therefore, the summation of each item may not equal to “Total”.

3

CIP Kernel Release Process

1. Review stable patches - status tracked in Gitlab [1]
• Mark the review and the name of the worker under the commit.
• Start to review stable kernel patches in rc stage

2. Review patch from CIP members via cip-dev [2]
• Update the status of the commit in patchwork

3. Start testing
4. Tag release candidate

5. Ack by other maintainers
6. Release and send the news to cip-dev

[1] https://gitlab.com/cip-project/cip-kernel/lts-commit-list

[2] https://patchwork.kernel.org/project/cip-dev/list/

26

4

https://gitlab.com/cip-project/cip-kernel/lts-commit-list
https://patchwork.kernel.org/project/cip-dev/list/

CIP SLTS Kernel Release Policy

27

Current Releases

Life-Cycle Release Frequency

First Release Projected EOL
Regular
Release

Release on
Demand

SLTS 4.4

SLTS 4.4 2017-01-17 2027-01 once a month

Depends on
criticality of
bug / security
fixes

SLTS 4.4-rt 2017-11-16 2027-01
once every two
months

SLTS 4.19

SLTS 4.19 2019-01-11 2029-01 twice a month

SLTS 4.19-rt 2019-01-11 2029-01
once every two
months

Note: Difficult to estimate actual release date because of number of
patches depends on each stable release

4

CIP SLTS Kernel Release Statistics

28
as of 11 Oct. 2020

June

26
October

46

Progress this year

4

CIP

SLT

S

4.4

4.19

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

LTS
4.4

4.19

CIP SLTS Kernel Maintenance

29

We are here

Upstream First Self-maintenance

Maintained by the LTS Project

Maintained by the LTS Project

Self-maintenance starts here

Upstream First Self-maintenance

CIP
Automated

Testing

Testing Goals

• Centralised control / distributed testing
• CIP developers who are distributed over the world should be able

to test CIP software on the CIP reference platforms, even if they
don’t have a platform locally

• Automated testing with Continuous Integration (CI)
• Sustain periodical and long-term kernel releases cost-effectively

• Open Source collaboration
• Improve the whole ecosystem and avoid reinventing the wheel

31

Open Source Approach

32

3

CIP Testing WG

lava-docker

lava.ciplatform.org

2

1

Use

Integrate

Upstream First

lab-cip-cybertrust lab-cip-denx

lab-cip-mentor lab-cip-renesas

Open Source Approach - In Practice

33

3

CIP Testing WG

lava-docker

lava.ciplatform.org

2

lab-cip-cybertrust lab-cip-denx

lab-cip-mentor lab-cip-renesas

Funding
1

Build automated

testing system
1

Test CIP software

Use

Integrate

Upstream First

Test linux-stable

release candidates

Upstream Code

& Code Reviews

Testing Architecture Overview

34

LAVA MasterArtifact Storage

GitLab runner @ k8s master

Built Artifacts

CIP Kernel CIP-Core stable-rc

CIP Reference Hardware

Source

Build

k8s pod (build)

Test

k8s pod (build) k8s pod (test)k8s pod (test) GitLab.com

AWS EC2

AWS EC2
on-demand

Local

Location key

AWS S3

GitLab runner @ k8s master

LAVA Worker LAVA Worker LAVA Worker LAVA Worker

CIP Reference Boards

35

CIP Reference Boards Supported Kernels

Platform Architecture SLTS v4.4 SLTS v4.4-rt SLTS v4.19 SLTS v4.19-rt

AM335x Beaglebone Black Armv7 Y Y1 Y Y1

Cyclone V DE0-Nano-SoC Development Kit Armv7 N N Y Y1

QEMU x86_64 Y Y1 Y Y1

RZ/G1M iWave Qseven Development Kit Armv7 Y Y1,2 Y Y1,2

RZ/G2M HopeRun HiHope Armv8 N N Y Y1,2

SIMATIC IPC227E x86_64 N N Y Y1

OpenBlocks IoT VX2 x86_64 N N Y Y1

CIP Reference Board Candidates Supported Kernels

Platform Architecture SLTS v4.4 SLTS v4.4-rt SLTS v4.19 SLTS v4.19-rt

Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit Armv8 N N Y Y1

1 Tested with standard Kernel configuration (non-RT)
2 Tested with Real-Time enabled Kernel

configuration

Tests

• Currently CIP is running the following tests:
• Boot test

• uname -a

• Spectre/Meltdown checker
• A shell script to tell if your system is vulnerable against the several "speculative execution" CVEs that

were made public in 2018.
• https://github.com/Linaro/test-definitions/tree/master/automated/linux/spectre-meltdown-checker-test

• LTP
• ltp-cve-tests, ltp-dio-tests, ltp-fs-tests, ltp-ipc-tests, ltp-math-tests, ltp-open-posix-tests, ltp-sched-

tests, ltp-syscalls-tests and ltp-timers-tests
• https://github.com/Linaro/test-definitions/tree/master/automated/linux/ltp

• https://github.com/Linaro/test-definitions/tree/master/automated/linux/ltp-open-posix

• Cyclictest+Hackbench
• This test measures event latency in the Linux Kernel, with hackbench running in the background to

stress the system.
• https://gitlab.com/cip-project/cip-testing/linux-cip-ci/-/blob/master/lava_templates/test_cyclictest+hackbench.yaml

36

https://github.com/Linaro/test-definitions/tree/master/automated/linux/spectre-meltdown-checker-test
https://github.com/Linaro/test-definitions/tree/master/automated/linux/ltp
https://github.com/Linaro/test-definitions/tree/master/automated/linux/ltp-open-posix
https://gitlab.com/cip-project/cip-testing/linux-cip-ci/-/blob/master/lava_templates/test_cyclictest+hackbench.yaml

Example GitLab Pipeline

37

Test Results in LAVA

38

Collaboration with KernelCI

• CIP joined the KernelCI project at its inception in 2019.
• As premier members we help to manage and steer the project.
• We also contribute via code and code reviews, and plan to keep

improving the project in this way.
• In next few months we plan to start using the KernelCI front end

to help us visualise our build and test results.

• If you want to learn more about KernelCI please attend
Guillaume’s BoF later today or Khouloud’s talk on Wednesday

evening.

39

https://foundation.kernelci.org/
https://osseu2020.sched.com/event/eCC4/bof-kernelci-lessons-learned-guillaume-tucker-collabora
https://osseu2020.sched.com/event/eCNl/lets-test-with-kernelci-khouloud-touil-baylibre

40

Summary

Summary

• CIP Kernel and Test Teams follows “Upstream First”
principle, and contributes to upstream.

• By taking advantage of kernel LTS, the team steadily
releases CIP SLTS kernels, and aims to maintain them for
10 years or more.

• To reduce CIP SLTS kernel release cost, the team is
closely working with CIP testing team to build automated
testing systems.

41

42

Please join us
to sustain

Civil Infrastructure
together !

Weekly Regular Online Meeting

• CIP IRC weekly meeting – Every Thursday UTC (GMT) 09:00

• Channel:
* irc:chat.freenode.net:6667/cip

• The meeting is used to share status among CIP developers
(Kernel Team, Test Team, SW Update WG, Security WG)

43

US-West US-East UK DE TW JP

02:00 05:00 10:00 11:00 17:00 18:00

CIP Kernel Workgroup Repositories

• CIP Linux kernel & real-time kernel
• https://git.kernel.org/pub/scm/linux/kernel/git/cip/linux-cip.git

• CIP Linux kernel CVE tracker
• https://gitlab.com/cip-project/cip-kernel/cip-kernel-sec

• CIP Linux kernel failed patches tracker
• https://gitlab.com/cip-project/cip-kernel/classify-failed-patches

44

https://git.kernel.org/pub/scm/linux/kernel/git/cip/linux-cip.git
https://gitlab.com/cip-project/cip-kernel/cip-kernel-sec
https://gitlab.com/cip-project/cip-kernel/classify-failed-patches

CIP Testing Workgroup Links

• CIP Testing WG wiki page
• https://wiki.linuxfoundation.org/civilinfrastructureplatform/ciptesting/ciptestingwg

• CIP LAVA master
• https://lava.ciplatform.org/

• CIP’s fork of lava-docker
• https://gitlab.com/cip-project/cip-testing/lava-docker

• GitLab Cloud CI - manages our k8s build pods
• https://gitlab.com/cip-project/cip-testing/gitlab-cloud-ci

• CIP CI - scripts used to build and test the Kernel
• https://gitlab.com/cip-project/cip-testing/linux-cip-ci

45

https://wiki.linuxfoundation.org/civilinfrastructureplatform/ciptesting/ciptestingwg
https://lava.ciplatform.org/
https://gitlab.com/cip-project/cip-testing/lava-docker
https://gitlab.com/cip-project/cip-testing/gitlab-cloud-ci
https://gitlab.com/cip-project/cip-testing/linux-cip-ci

Contact Information and Resources

To get the latest information, please contact:

• CIP Mailing List: cip-dev@lists.cip-project.org

Other resources

• Twitter: @cip_project

• CIP Web Site: https://www.cip-project.org

• CIP News: https://www.cip-project.org/news/in-the-news

• CIP Wiki: https://wiki.linuxfoundation.org/civilinfrastructureplatform/

• CIP Source Code
• CIP repositories hosted at kernel.org: https://git.kernel.org/pub/scm/linux/kernel/git/cip/

• CIP GitLab: https://gitlab.com/cip-project

mailto:cip-dev@lists.cip-project.org
https://www.cip-project.org
https://www.cip-project.org/news/in-the-news
https://wiki.linuxfoundation.org/civilinfrastructureplatform/
https://git.kernel.org/pub/scm/linux/kernel/git/cip/

Thank You

47

Upcoming CIP Sessions

○ CIP Mini summit
■ Friday, October 30 • 11:00 - 12:30

○ Other CIP members talks
■ The International Effort to Establish Open Source Base Layer of Cyber Security for IACS

● Kento Yoshida, Renesas Electronics Corporation

● Wednesday, October 28 • 16:15 - 17:05

■ Threat Modelling - Key Methodologies and Applications from OSS CIP Perspective

● Dinesh Kumar, Toshiba Software India & SZ Lin, Moxa Inc

● Tuesday, October 27 • 14:15 - 15:05

