

Using Chroot to Bring Linux
Applications to Android

Copyright 2013,
The PTR Group, Inc.

Mike Anderson
Chief Scientist

The PTR Group, Inc.

mike@theptrgroup.com

ABS-SClara-0428-2 Copyright 2014, The PTR Group, Inc.

Why mix Android and Linux?

Android under Linux

Linux under Android

Communicating between the domains

ABS-SClara-0428-3 Copyright 2014, The PTR Group, Inc.

What are we trying to Accomplish?

Android is probably the most widely
deployed version of Linux on the planet

We want to extend the platform to handle
other tasks without extensive modification of
the underlying framework

Enable porting of Linux applications to
Android

Ease package management issues by
allowing easy access to Linux repositories

Get an optimal mix of Linux and Android
for use in non-phone applications

ABS-SClara-0428-4 Copyright 2014, The PTR Group, Inc.

Advantages of Android

Tremendous market position

Well-defined development and
deployment environments

Great application framework with
good modularity

Network, audio, power, etc.

Well-understood GUI/UX

Good selection of Java libraries

Availability of NDK gives option for higher
performance than Java implementation

Source: pctechmag.com

ABS-SClara-0428-5 Copyright 2014, The PTR Group, Inc.

Good Integration of SDK

ABS-SClara-0428-6 Copyright 2014, The PTR Group, Inc.

Disadvantages of Android

Package management
Difficult to update the underlying framework

Library and application availability
Purpose-built for phones/tablets and not much
else

Extensions to elements like libsensors
requires rebuilding the AOSP sources
GUI choice dictates the kernel choice

4.1 is different from 4.4
Look and feel are different too

Difficult to go off the path set by Google

Android SCM does not facilitate easy
extensions by non-OHA folks

ABS-SClara-0428-7 Copyright 2014, The PTR Group, Inc.

Bionic libc Compatibility Issues

Restricted POSIX compatibility

No C++ exceptions

No locales or wide char
support

Several missing functions like getpwd()

Really built as a single-user user space

More info found in bionic/libc/CAVEATS

These issues and more make it difficult to
port standard Linux applications to
Android

Source: slideshare.net

ABS-SClara-0428-8 Copyright 2014, The PTR Group, Inc.

Different Views of the World

Linux and Android see things differently

Bootloader

Linux Kernel

OS Libraries

OS utilities, runtime,
etc.

OS
Services

Apps

Bootloader

Linux Kernel

Init

HALs, flingers, etc.

Application
Framework

Applications

Linux Android

ABS-SClara-0428-9 Copyright 2014, The PTR Group, Inc.

The Ideal World

In the ideal world, we could just use the
Android framework and
get the UX

Unfortunately, Android
is a tightly-coupled
architecture that makes
that very difficult

These elements need
to be kept intact for
Android to function

Bootloader

Linux Kernel

Init

HALs, flingers, etc.

Application
Framework

Applications

ABS-SClara-0428-10 Copyright 2014, The PTR Group, Inc.

If we want to run Linux code under
Android, we could:

1. Port the Linux code to bionic libc

Problematic due to differences between bionic and
glibc

2. Run Android as a package under Linux

The approach taken by Pragmatux

3. Run Linux applications in a chroot
environment

4. Extend LXC to support options 2 or 3 better

ABS-SClara-0428-11 Copyright 2014, The PTR Group, Inc.

Chroot is a command that was
introduced into Unix in 1979
Changes the apparent root file
system for the calling process
and its children

Used for development and testing
when the target O/S release is
different from the development host

typically get to files outside of the chroot

Only root user can execute the chroot
command

Source: bukisa.com

ABS-SClara-0428-12 Copyright 2014, The PTR Group, Inc.

Pragmatux

Found at http://www.pragmatux.net/
Project leads are Bill Gatliff and Ryan Kuester

Hardware boots Linux
Uses a Debian-like approach for repos

Leverages idea that Android file system has
little overlap with Linux file system

/proc, /etc, /dev, /sys are a few exceptions
Uses bind mounts to keep things straight

Primary goal is to use Android framework for
the UI but keep predictability of Linux for
embedded applications

ABS-SClara-0428-13 Copyright 2014, The PTR Group, Inc.

Android File System in chroot

We can encapsulate the Android
environment into the embedded Linux file
system

Sockets and kernel communications work
as normal

Android FS Embedded FS Communications Channels

Source: insymbols.com

ABS-SClara-0428-14 Copyright 2014, The PTR Group, Inc.

+/- of this Approach

+
Linux is in charge and we can use modern kernel with
PREEMPT_RT and Android code from staging tree for
Android support
Gives us Android UX with HRT/SRT support for control
applications

We can prioritize Android apps as needed

Helps keep costs down
Only one CPU needed

Multi-core is a big plus

-
We need to tweak the Android init sequence so Android

We need to do the bind mounts as well

Complexity can be troublesome
We need enough RAM and storage for 2 O/S user spaces

ABS-SClara-0428-15 Copyright 2014, The PTR Group, Inc.

Linux File System with chroot

An alternate approach is to host the Linux
file system in the Android F/S
The Android device must be rooted for this
approach to work
Using chroot, we can create an alternate root
file system that Linux applications can live in
easily
Linux can live with /bin, /etc, /dev, /lib

/proc and /sys can be bind mounted

Alternatively, we can loop mount an image
and chroot to the mounted image

Gives us a full Linux in our Android

ABS-SClara-0428-16 Copyright 2014, The PTR Group, Inc.

+/- of this Approach

+
There are already apps on Google Play that streamline this sort
of installation
We get Linux package management capabilities
You can use VNC to get GUI-centric Linux applications running
Only one CPU needed

Multi-core is a big plus

We only need to install the libraries and minimum files to run

-
RAM and storage requirements vary depending on applications
being run
Android framework is in charge
Not likely that the kernel will have PREEMPT_RT or other latency
settings
Development environment can be tricky

chroot

ABS-SClara-0428-17 Copyright 2014, The PTR Group, Inc.

Simple Example

We had a customer that
needed to run some
RedHat-based programs,
but wanted to get the
Android UX

Media-scanning kiosk device
Looking for malware on user media

Cut down on training time for
users and get touch-screen support
Developers were mostly Java centric

We constructed an Android x86 platform running
Atom using a COTS motherboard
Built Android from AOSP sources and edited
libsensors for the devices we had on the
motherboard

ABS-SClara-0428-18 Copyright 2014, The PTR Group, Inc.

Simple Example #2

Using ldd we were able to isolate the
application and required libraries to the bare
minimum

Installed chroot was < 100 MBs with the app and
libraries

We created a daemon that ran in the chroot
that listened for requests from the Android
app via socket communications
We then created the Android application that
passed configuration and scanning requests
to the daemon that dispatched the
application and returned responses to
Android

ABS-SClara-0428-19 Copyright 2014, The PTR Group, Inc.

Simple Example #3

Small team of 2.5 FTEs to build Android,
chroot components and interface daemon

We had to start the chroot and the daemon
from the Android init process

Two month project including custom
enclosure

Final product:

ABS-SClara-0428-20 Copyright 2014, The PTR Group, Inc.

Step-by-step for an Android Device

Make sure you have the device rooted
Go to the Google Play Store

Install busybox, terminal emulator
and VNC client if you need Linux
window manager

that can install Linux
Pick one and install it

Start the Linux installer, pick your distribution and
download it

Follow the steps to install it

Voila! Linux on your Android device
Linux will see your Android devices /dev and the network
will just work
You can start an ssh server, VNC server, web server, etc.
automagically

Source: google.com

ABS-SClara-0428-21 Copyright 2014, The PTR Group, Inc.

Tuning the Linux Side

Linux will be a console application visible in the
terminal emulator

Graphical Linux applications will use VNC for display

Use the Linux package manager for your variety
to install additional package as needed

You will need to edit the ~/.vnc/xstartup to add
the applications you want to start on VNC
connection

I installed lxde, but others are posible

Set your VNC password using vncpasswd

Start your VNC client for window manager
goodness

ABS-SClara-0428-22 Copyright 2014, The PTR Group, Inc.

Example Walkthrough

ABS-SClara-0428-23 Copyright 2014, The PTR Group, Inc.

Example Walkthrough #2

ABS-SClara-0428-24 Copyright 2014, The PTR Group, Inc.

Example Walkthrough #3

ABS-SClara-0428-25 Copyright 2014, The PTR Group, Inc.

Example Walkthrough #4

ABS-SClara-0428-26 Copyright 2014, The PTR Group, Inc.

Example Walkthrough #5

Launch VNC

ABS-SClara-0428-27 Copyright 2014, The PTR Group, Inc.

Communications Between Domains

Android is missing most of the POSIX IPC
mechanisms

No message queues, shared semaphores, etc.

IP sockets work fine

Path of least resistance

You can create your own communications
channels via the kernel

Device drivers work via the kernel

/proc and /sys work too

ABS-SClara-0428-28 Copyright 2014, The PTR Group, Inc.

Summary

Via the common Linux kernel, it is possible to co-
host Linux and Android apps at the same time

Easier than porting the application to Android
Allows you to extend Android with existing Linux ARM
repos

more flexible than Google Play Store
Allows you to do native ARM development on Android

Multi-core platforms with at least 2 GBs of RAM work
reasonably well
You can tune the chroot to contain just what you need

Smaller footprint

portable platform

