

Polishing the Dirt

Deploying vendor software in embedded
Linux systems

Porting legacy RTOS code to Userspace drivers framework

© Vitaly Wool, BroLab AB, 2010

Vendor software?
● Software that comes from semiconductor

vendors together with the chip
– Firmware an chip enablement
– Basic examples
– Middleware

● Intrusion into Android framework
– ...and even applications

● Ok. Why?

Product development objectives
● Marketing pressure

– Faster time to market
– Feature richness

● “Development minimization” paradigm and
stereotypes

– Building from blocks
– OSS perception: “just take what you need”

● Why not use only OSS solutions then?

OSS for an end user product?
● OSS is not production ready

– Always in development stage
● Vendors produce specific chips per big

customers' demand
– No OSS support out of the box

● Needs quite a bit of tweaking
– Someone is to implement support for that

● Vendor?
● End user product manufacturer?
● Third party?

Vendor software evolution
● “Complete solutions” instead of chip

enablement
– Save development time
– Mostly integration work
– Less risk for the product producer
– Vendors take the responsibility for their

code
● Bugfixing
● Maintenance

● So why so sad?

Vendor software: as it is
● A lot of redundant code

– Support for multiple platforms
– Support for chip families

● “Sorry, you're not our only customer”
● Many levels of indirection

– Ex. 5 callback levels
● Legacy code

– Developed for years, the base might be old
● And that's not it...

Vendor software and Linux
● Origin is very different

– Initially written for an RTOS
– Assumes single address space
– No kernel/userspace separation

● Clean porting to Linux is not a no-brainer
– Requires deep knowledge
– Time consuming

● Ends up with a quick-and-dirty porting

Vendor software: pray or deny?
● Make the most of the vendor SW

– Let the vendor do the work
(development/integration)

– Leave maintenance to the vendor
● Minimize the use of the vendor SW

– Treat it as a prototype
– Develop own solution

● Solution analysis before deployment
– Evaluation agreement

Collaborative approach
● Good as long as you're a customer

– No local knowledge of the internals
– No community acceptance
– You totally depend on the vendor support
– Each service pack is a problem

● Forward porting may become a problem
– Another kernel version
– Changes in the framework

“Denial” approach
● Might be good in the ideal world
● Not applicable in the real one

– Takes too much effort
– You won't get complete control anyway

● Binary parts (firmware)
– You are not backed up by the vendor

● e. g. for the firmware upgrade

Analytic approach
● Apparently the best, but...

– Criteria are unclear
– Usually requires additional agreement with

the vendor
– Analysis itself takes time

● Still it's usually worth it :-)
● Our proposal: different criteria for

– Open source vendor software
– Non-open source vendor software

Open source vendor software
● Mostly kernel-related

– Device drivers
– Generic extensions
– Hackery in generic code

● Criteria are clear enough
– LDM conformance for drivers
– No hackery as above
– Mainline acceptance for generic changes

Non-OSS from vendors
● Proposed criteria

– Modularity
– Security
– Proper kernel/userspace interaction

● Consider deploying userspace drivers
● NB!

– Need to understand the reasoning behind
“wrong” solutions

– Need to communicate back to the vendor
to not lose the warranty/support

Userspace drivers framework
● Kernel framework for having part of driver

functionality in userspace
● Authors/credits

– Thomas Gleixner, Hans-Juergen Koch
● Meant mostly for simple devices

– Complete kernel driver might be an overkill
● Also can solve some licensing issues

– No binary kernel module nonsense
● Userspace IO system (UIO)

UIO: highlights
● Kernel “stub”

– Low level stuff (interrupt handling)
– /dev/uioX device files

● Userspace daemon
– Driver “logic”
– Interaction with the kernel stub

● File operations, mmap()'ing etc...

Polishing examples

Vendor OSS example:
WLAN driver stack

● Transport part
– SDIO: abuses existing OSS driver
– SPI: doesn't use kernel SPI framework

● WLAN part
– Initially written for the legacy RTOS

● Licensing issues
● Consequences

– Nowhere near community acceptance

Possible improvements
● Use mainline kernel features where

possible
– Use standard SD controller driver
– Conform to LDM

● Use userspace drivers framework
– Move WLAN state machine to userspace
– Keep networking part in kernelspace
– Keep SDIO part in kernelspace

Improvements: impact
● Stock SD driver deployment

– SD card reading on resume problem is
gone

– Less code to maintain
● WLAN SM to userspace

– No licensing issues
– Some speed increase

● Faster interaction with wpa_supplicant

Vendor non-OSS example:
FM radio

● Solution completely in userspace
– Uses AF_BLUETOOTH socket to

● Send commands to the chip
● poll for events from it

– Needs BlueZ hciattach to be running
– Only can read all events at once

● Can only process 1 command at a time
● Has to ignore events while waiting for

command completion
● High latencies in event processing

Possible improvements
● Implement a custom driver interacting with

BT UART
– No need to take HCI interface up

● Implement event processing as an
userspace driver

– Event reading in kernelspace
– FM state machine in userspace

Improvements: impact
● Lower latency for event reception

– better/faster FM radio operation
● No other outcome

– FM SM can't handle more than one
command at a time

● Global state variables
● Multiple race conditions

– Async events (RDS text) may still be lost

Conclusions
● Deploying vendor software in a product...

– Is unavoidable
– Is to be considered carefully

● Userspace drivers
– Provide efficient way for vendor SW

redesign
● Performance, licensing, maintenance

● Communication is very important

Q&A

Thanks for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

