

Orange Empire Signal Garden
Lessons Learned

OR

* For those of you who's first language is not English
“spider” is a bug+ not a computer term..

+ “Bug” denotes an animal – again not a computer term.

Remove spider* before
servicing main board.

About me

● I am a software engineer who knows a little
about hardware.

● I wanted a project which would give me a
opportunity to learn.

● If I wasn't such an idiot when it came to
hardware I would have learned a whole lot less.

Orange Empire

Historic Transportation Museum In Perris CA.

Interactive Signal Garden

● ### picture

Railroad Signal Design

● Created at a time when electricity was a new
and unproven technology.

● Designed to last.
● Built to work with little or no maintenance

Conventional Relay

12v, Low Amp relay
● Small
● Cheap
● Plastic
● Thin wires
● Protected

Environment

Railroad Relay

12v, low amps
● Big and heavy
● Glass, steel, and

ceramic
● Gravity driven, no

springs.
● Thick wire
● Harsh environment

OERM's Signals

● Some of our signals were build over 100 years
ago.

● … and some of them are really old.
● The OERM wants to preserve not only the

artifacts but the skills of the time.
● Almost all artifacts are scheduled to be restored

and used.
● “Real soon now”.

Signal Garden

● Has over 16 signals.
● Most are working
● Push a button, the signal operates

Nice things about working on the signal garden as
opposed to regular signals.
● You don't have to go a mile down the track to

reach the next signal.
● When the signals don't work, operations isn't

made at you because trains can't run.

Why Linux and the Raspberry PI

● Commercial off the shelf parts as much as
possible.

● Development system = production system.
● Very easy to program.
● Relatively low cost ($150) for the total system.

(I work for a company that could make a custom
system using a PIC for $5.98 in quantities of
1,000, but there is only one OERM)

Basic Design

PI

Power Tail

12V

USB
Relays

USB
Input

To buttons

To
Signals

GPIO

USB

Garden
Controller

Major Components

● Raspberry PI Model A
– Replaced with Model

B+

USB relay board

USB relay board

● Programming is extremely simple
● Device considered a serial interface (RS232)
● Open the device, send commands.

udev issue.

● udev assign device names based on it's rules.
● /dev/ttyACM0, /dev/ttyACM1, /etc/ttyACM2
● You can't be guaranteed the right device each time.

Solution
● Use the “device by-id” name
● #define RELAY_DEVICE "/dev/serial/by­
id/usb­Microchip_Technology_Inc._CDC_RS­
232_Emulation_Demo­if00"

Relay Programming

 relay_fd = open(RELAY_DEVICE, O_RDWR);

 if (relay_fd < 0)

 throw(relay_error(...));

 // … set raw mode

 write(relay_fd,

 “relay on 5\r”, sizeof(msg));

Input: Pokey55 board

Input: Pokey55 board

● Expensive
● Overkill
● Requires Programming
● What you get when you don't know better

Pokey55 board programming

● Pokey55 is a keyboard emulator.
● Press a button, a key is typed on the keyboard.
● Linux routes all keys through a common

interface.

Pokey55: Programming

● The low level HID interface allows you to
intercept events from specific input devices

● Poorly documented though.

Pokeys programming

int fd = open(device, O_RDONLY);

if (ioctl(fd,

 EVIOCGRAB, (void *)1) != 0)

 die("GRAB failed");

struct input_event event;

int read_size = \

 read(fd, &event, sizeof(event));

Input #2: USB/Serial with GPIO

● MIKROE-549 (USB serial breakout board)

Input #2: USB/Serial with GPIO

● Cheap ($9)
● Requires external pull-up resistor.
● GPIO requires polling.
● Works well.

Input #2: USB/Serial with GPIO

● Programming is a nightmare
● Low level programming must be done through

libusb.
● Must have good knowledge of libusb and the

UART chip.
● Code to read 8 GPIO pins periodically: 861

lines long!

UART Code

 int result = libusb_claim_interface(handle, MCP2200_HID_INTERFACE);

 if (result != 0) {

 syslog(LOG_ERR, "CONFIGURE claim interface result %d", result);

 throw(mcp2200_error_t(__FILE__, __LINE__, result,

 "Claim of interface failure"));

 }

 // Send the configuration command. Get the result of the transfer

 result = libusb_interrupt_transfer(

 handle,

 MCP2200_HID_ENDPOINT_OUT,

 const_cast<unsigned char*>(config_data.get_data()),

 config_data.get_data_size(),

 &write_size,

 MCP2200_HID_TRANSFER_TIMEOUT);

 libusb_release_interface(handle, MCP2200_HID_INTERFACE);

Input #3 (Backup): AVR Trinket

Input #3 (Backup): AVR Trinket

● Cheap ($10)
● Easy to program
● Self contained (no extra resistors required)
● After programming acts like a keyboard sending

a character when a button is pressed.
● Took example program and stripped out the

fancy stuff, so easy to program.

AVR Trinket Programming

● Pretty much the same as the Pokey
programming.
– Grab the HID device

– Read raw events

Powerswitch Tail

Powerswitch Tail

● Inherited big power battle between
– Programmer (keep it on all the time)

– Management (Turn it off at night)

● Absolute requirement: Garden turns itself off at
night.

● Practice: Docent's put the system in power
override mode and keep it on 24/7.

Power Programming

● Wired to Raspberry PI GPIO
● Programmed using the Wiring PI library
● Simple to use and program
● However, no interrupts

Power Programming

 switch (new_state) {

 case POWER_ON:

 digitalWrite(POWER_CONTROL, 1);

 break;

 case POWER_OFF:

 kill_garden();

 digitalWrite(POWER_CONTROL, 0);

 log_msg += "off";

 break;

default:

 std::cout << "Internal error " << std::endl;

 exit(8);

 }

Programming

1) Every I/O board had a test program.

2) Signal program was connected to the button
input program by a pipe.
● Allowed for input to be tested with button
simulator

● Allowed for multiple button handling
programs for multiple input boards

WIFI

● Does a industrially controller really need wifi?
● YES!

– If you want to debug it in the air conditioned office
instead of the 100° garden.

Design vs. Reality
A few hard lessons

Tools

Expected to use:
● Soldering Iron
● Wire Strippers
● Volt ohm meter

Tools (Actual)

Vacuum Cleaner
● Mouse poop removal

– high priority item.

Tools (Actual)

Clearing supplies.
● Lots and lots of

dirt.
● Spider webs.
● Wasps nests.

Tools (Actual)

Label Maker

Ran through three cartridges before I got
everything labeled.

Tools (Actual)

Caulk

Me to head signalman:

Me: Why do you have
dirt floors at the bottom
of each signal box.

Head: We don't. They
are concrete.

After cleaning found out
what he said was true.

Tools (Actual)

● Heavy Gloves
● Spider Killer

(More on this later)

Surprise 1: Legacy System

Given schematic for:
● System as currently wired
● Planned new features
● Legacy features

All in the same document

... with no identification as to which was
which.
● Programming notes for a program we didn't

have source to.

Button Labeling
East Side

Button 1

Button 2

Legacy Labeling / North

Button 4Button 2

Button 3

The other
Button 2

Other Wiring Issues

● WWA (Wig Wag Signal A)
– Connected to relay WWB

– Relay connect to terminal WWA

– Terminal connected to port labeled “Upper Wig
Wag” on the computer

● Button 2
– Yellow / Blue wires at the switch

– Purple / Black at the signal box

Big Problems

● Hidden underground junctions
● Buttons and signals had ground wires

connected together (more on this later)

“Ran into a Lot of Traffic In Salt Lake
City”

● A phrase I use a lot
● A phrase I explain a lot
● Comes from an old Jack Benny Show

The Characters

● Jack Benny, comedian
● Dennis Day

– Only man I know of who successfully played a
dumb blond

The Show

From a show done in San Diego during the war.

Dennis rushes on stage out of breath.

Dennis: I'm sure glad I got hear Mr. Benny. I barely
made it.

Jack: Dennis, there something I don't understand.
You left Los Angeles Tuesday for a show that we are
doing in San Diego on Sunday and you just got here.

Jack: How come?

The Show

Dennis: I ran into a lot of traffic in Salt Lake City.

Jack: Dennis… Dennis… Why did you go from
Los Angeles to San Diego by way of Salt Lake
City.

Dennis: I wanted to avoid the stoplight in
Oceanside.

Typical Wiring Path

Button #1 has a
yellow wire goes
down a pipe which
goes to...

Typical Wiring Path

… the track indicator
where it is tied to a red
wire with a wire nut
(hidden junction) which
goes to:

Typical Wiring Path

… tri-color light's base where
a terminal block ties it to a
purple wire which goes to:

Typical Wiring Path

… secondary signal box
(I think) where it turns
around and goes to:

Typical Wiring Path

… controller box where
it goes to a terminal
block and becomes a
black wire where it is
connected to:

Typical Wiring Path

.. the input relay (it's final
destination):

Roadmap

Mysteries

 Why is the signal box
full of grass?
(This isn't a nest of any
sort, just a bunch of
grass)
Much later – tried to
drop a wire down a 4”
pipe and failed.
Birds nests (2 of them)

ACME Traffic Signal Head #1

Birds nest #3.

Nest constructed during
restoration.

Found while I was on
top of the ladder when
the bird flew out on full
afterburner.

ACME Traffic Signal Head #2

Arms removed
temporarily for
maintenance (For 10+
years)

Leaving small round
holes at the top.

ACME Traffic Signal Head #2

Arms removed for
maintenance (For 10+
years)

Leaving small round
holes at the top.

Bird's nests #4, #5, #6,
#7.

Removed

Next task: Figure out what I've got

● Entire layout was probed.
● Every wire was labeled (or so I thought)

New Linux controller designed, and extensively
tested before deployment.

Deployment

The plan:

1) Open cabinet

2) Remove old controller

3) Install new controller

Four hour job – maximum

Deployment Actuality

1. Open cabinet

2. Quickly close cabinet

3. Go to Home Depot, get work gloves and spider
spray.

4. Open cabinet

5. Kill black widow

6. Remove web and dead spider.

7. Carefully proceed with installation

Mistake #1

I assumed that the wires went like this:

Instead they went like this

After removal I had a bunch of this:

ComputerSignal LabelLabelLabel

Signal Label

ComputerSignal LabelLabelLabel Term. Block Term. Block

Rework

● All wires had to be re-identified.
● 4 hours of work took about 3 months of

weekends.

Alpha testing

Button was designed to
start signal when
pressed.

Stop on second press or
timeout.

Alpha testers had
different ideas.

Problem #1:
Input controller going offline

● Input controller was disappearing from the USB
bus.

● Happened every time a wig wag stopped
sounding.

● Ran through a bunch of USB hubs trying to
figure out the problem.

Cause

● Wig wags have huge magnets. (Two of them.)
● Turning off a big magnet generates a big

energy pulse
● … which then goes down the common ground

wire and
● … causes the input controller to reset.
● – – – and later fry.

Fix #1

● Huge capacitor
● Result fried input

board.

Fix #2: Flyback Diode

Result: Fewer problems – but still problems.

Fix #3: Relay isolation and flyback
diodes

● Result: The system mostly works. Now it's all
USB problems.

+12v

Signal GND

Input
Controller

Input GND

Alpha testing: Operators

● Wrote a page of instructions for the docents
concerning:

1) Turning the system on

2) Turning the system off

3) Recovering from hangs

Docent's Reality

1) If the garden's down, turn the whole thing off
and back on.

2) If it's still down, call Steve.

RTC

● Raspberry PI has no RTC.
● Resetting power causes it to loose track of

time.
● USB problems prevent the system from getting

time from the network.

RTC

● Raspberry PI's solution, “fake hardware clock”
● When shutting down, record the time
● When starting up, use this time to set the time

of day.
● Good for keeping time marching forward
● Lousy for turning on the garden in the morning.

Solution: DS3231 RTC

● Small I2C board that sits on the Raspberry PI
GPIO connector.

RTC Programming

● Must enable I2C bus in /boot/config.txt
● Need new packages: i2c-tools
● Requires a bit of configuration:

– Tell the I2C system you have a RTC

– Tell udev to create devices for it

– Tell systemd to start and stop it

Lesson #2: USB and USB Hubs

● Raspberry PI did not have enough USB power
to power the devices (relay board, input board,
wifi).

● Almost all powered hubs will backpower the
Raspberry pi.
– With an inadequate amount of power.

● Two power supplies fight each other and the
Raspberry Pi looses.

Solution: Model B

● 4 USB ports.
● Enough power to make everything work.

Next
Project:

The
Semaphore

Semaphore Guts

Semaphore Restoration

● Picture is not what I got originally – I cleaned it
up before taking the picture.

● Found service manual on the Internet.
● Got a second mechanism off the Internet, but

– One part arrived damaged

– The only part, the only vital part

– That I happened to have a spare for

New Feature Request

It's nice that you got the crossing bells to work.

Now make its stop.

Request made a board of directors member who
was trying to hold a meeting next door.

Easily programmed in Linux.

Demand!

Future Work

● Acme Traffic Signal Improvements

Planned: New controller
● First a look at the old (1930) controller

Controller

Controller

Controller

Linux Controller Plans

Video

Raspberry PI

Relay
Board

S
ig

na
l H

ea
d

S
ig

na
l H

ea
d

Lessons Learned (General)

● You can accomplish a lot with a vacuum
cleaner and cleaning rag.

● Perris, CA is an ideal climate for the black
widow spider.

● Never assume that previous engineers who
deigned your system were sane.

● Document well (and correctly) for those that
come after you.

Lessons Learned (Electrical)

● Very large inductors create a very large energy
pulse when turned off.

● Flyback didoes
● Isolation
● Cross talk
● Common grounds suck.
● Circuit isolation (computer and signal use

different wires totally)

Lessons Learned
(Restoration / Design)

● Talk to people who know more than you do
– Preferably before you ruin equipment.

● Patent searches are useful for finding historical
documents.

● You can find lots of old manuals on the Internet.

Lesson Learned Linux

● Lots of hooks into low level drivers
– USB

– Keyboard

– GPIO

– I2C/RTC

● USB Hubs – most are badly built
– Avoid them

Contact Information

http://www.oualline.com
oualline@www.oualline.com

Contact Information

http://www.oualline.com
oualline@www.oualline.com

TODO

● ## how to interface to relay board.
● ### how to interface to keyboard simulator
● ### GPIO / serial simulator
●

● ### programing the input (how)
● ### programming the gpio
● ### programming

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103

