Boot Time
Memory Management

Mike Rapoport
<rppt@Ilinux.ibm.com>

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 825377

Topics

e Memory initialization
e memblock: APl and internals
® From memblock to kmalloc

Even the physical page allocator ... needs to allocate
memory to initialise itself. But how can the physical
page allocator allocate memory to initialise itself?

Mel Gorman, Understanding the Linux Virtual Memory Manager

https://www.kernel.org/doc/gorman/html/understand/

Just before start:

kernel

parameters initrd

e Lots of memory free

e Completely unclear where is it

Tread carefully!

FW data

From start:tomm 1nit ()

e Assembly sets up basic page table

o Usually embedded into kernel .data
e setup arch () continues memory initialization:

o Detect physical memory

o Reserve used areas (kernel image, initrd, firmware data etc)
e start kernel () allocates several memory areas

o Chunk size is usually larger than MAX ORDER
o Log buffer, VFS caches

e andcallsmm init ()

And MM initialization is only a part of system init

Ancient history

o Vv2.0:

-

.

setup arch (&command line, &memory start, &memory end);

memory start = paging init (memory start,memory end);

memory start = console init (memory start,memory end);
#ifdef CONFIG PCI

memory start = pci init (memory start,memory end);
#endif

memory start = kmalloc init (memory start,memory end);

=\

4

e Vv2.3.23pre3:

©)

bootmem - a First Fit allocator which uses a bitmap to represent memory

https://www.kernel.org/doc/gorman/html/understand/understand008.html

From bootmem to memblock

e Placing bootmem bitmap was challenging
o Which bank, which NUMA node?
o Bitmap size (1M for 32G of RAM)

e Slow transition to memblock

o Started in v2.5 with powerpc64
o Intermediate NO_BOOTMEM compatibility layer

e Completedinv4.20

Memblock vs bootmem

+ Static arrays instead of bitmap
> (Can be used before memory configuration is known

+ Arbitrary granularity instead of page

— Allocation logic is more complex
> Butit’s ok, we should not have many of those anyway

— Implicit growth of data structures
> Too many early reservations may corrupt used memory

memblock structure

memory

Bank 0 Bank 1

reserved

e

Bank 2 Bank 3

Basic APIs

e memblock add(), memblock add node ()
o Register memory bank with memblock
® memblock remove ()
o Make memory region invisible to the kernel
e memblock reserve ()
o Mark used memory region as reserved
e memblock free ()
o Mark memory region as free

Allocation APIs returning physical address

Functions that allocate memory and return its physical address:

e memblock phys alloc()

o Allocate chunk of requested size with specified alignment
e memblock phys alloc range ()

o Allocate a chunk within certain range
e memblock phys alloc try nid()

o Allocate a chunk on a certain NUMA node

The memory is not cleared and may contain garbage!

Allocation APIs returning virtual address

Functions that allocate memory and return its virtual address:

e memblock alloc try nid raw(),

memblock alloc try nid()
o Allocate chunk of requested size with specified alignment from certain NUMA
node and within certain range
o If constraints are too tight, try another node and then drop lower limit

® The “normal” variant clears the memory

e The’ raw’variant does not!
o Could be poisoned if VM debug is enabled

And their convenience wrappers

Functions that allocate memory, clear it and return its virtual address:

e memblock alloc ()
o Allocate chunk of requested size with specified alignment
® memblock alloc from()
o Allocate chunk above certain physical address
e memblock alloc low()
o Allocate chunk in low memory
e memblock alloc node ()
o Allocate chunk in certain NUMA node

Convenience wrappers cont.

Function that allocates memory, and return its virtual address:

® memblock alloc raw()

o Allocate chunk of requested size with specified alignment
® The memory is not cleared

o Could be poisoned if VM debug is enabled

Under the hood

e memblock find i1n range node ()
o Find free area in given range and node
o Traverses free memory areas
B memory && !reserved
o Can be top-down or bottom-up

e memblock reserve () thearea

o Merge adjacent entries
o Double reserved array if needed

Under the hood

e memblock alloc range nid()
o Try to find free memory with all the constraints
o Retry on all nodes
o Retry without mirroring requirement
m Only on systems that support memory mirroring
o Return physical address

e memblock alloc internal ()
o Trymemblock alloc range nid()

o Retry without the lower bound
o Return virtual address

Controlling memblock behaviour

memblock allow resize ()

o Enable/disable resizing of memblock arrays
memblock set bottom up ()

o Set allocation direction (default is top-down)
memblock enforce memory limit ()
memblock cap memory range ()
memblock mem limit remove map ()
memblock set current limit ()

memblock trim memory ()

Querying memblock state

e memblock phys mem size (), memblock reserved size()
e memblock start of DRAM(), memblock end of DRAM(()
e memblock is memory(), memblock is reserved()
o Check for a given address
e memblock is region memory (), memblock i1s region reserved()

o Check for a given range
e memblock get current 1imit ()
o Get high limit for allowed allocations

Traversing memblock arrays

for each free mem range(), for each free mem range reverse ()
o Iterate over free memory areas
o Take into account node and memory attributes
for each reserved mem region ()
O Iterate over reserved memory areas
for each mem range(), for each mem range rev ()
o Iterate over intersection of memblock arrays
m For example areas found in memory and absent in reserved
for each mem pfn range ()
for each memblock ()
for each memblock type ()

Back to MM init

Reserve used areas - memblock reserve ()

o Kernel, initrd, firmware pages

Detect and register physical memory - memblock add()
o Available banks, NUMA topology

Set memblock parameters suitable for a machine
o Limit to mapped memory, enforce bottom up allocations

Usememblock alloc () and friends to allocate memory
Give pages to the buddy page allocator

© memblock free all ()
o Usually called by arch specificmem init ()

References

e A quick history of early-boot memory allocators

e Boot Memory Allocator chapter
o from “Understanding the Linux Virtual Memory Manager” by Mel Gorman

® Boottime memory management, kernel documentation

https://lwn.net/Articles/761215/
https://www.kernel.org/doc/gorman/html/understand/understand008.html
https://www.kernel.org/doc/gorman/
https://www.kernel.org/doc/html/latest/core-api/boot-time-mm.html

Thank you!

