
Boot Time
Memory Management

Mike Rapoport
<rppt@linux.ibm.com>

This project has received funding from the European
Union’s Horizon 2020 research and innovation

programme under grant agreement No 825377

● Memory initialization

● memblock: API and internals

● From memblock to kmalloc

Topics

Even the physical page allocator … needs to allocate

memory to initialise itself. But how can the physical

page allocator allocate memory to initialise itself?

Mel Gorman, Understanding the Linux Virtual Memory Manager

https://www.kernel.org/doc/gorman/html/understand/

Just before _start:

kernel parameters initrd FW data

● Lots of memory free

● Completely unclear where is it

Tread carefully!

● Assembly sets up basic page table
○ Usually embedded into kernel .data

● setup_arch() continues memory initialization:
○ Detect physical memory

○ Reserve used areas (kernel image, initrd, firmware data etc)

● start_kernel() allocates several memory areas
○ Chunk size is usually larger than MAX_ORDER
○ Log buffer, VFS caches

● and calls mm_init()

And MM initialization is only a part of system init

From _start: to mm_init()

setup_arch(&command_line, &memory_start, &memory_end);
memory_start = paging_init(memory_start,memory_end);
...
memory_start = console_init(memory_start,memory_end);

#ifdef CONFIG_PCI
 memory_start = pci_init(memory_start,memory_end);
#endif
 memory_start = kmalloc_init(memory_start,memory_end);

Ancient history

● v2.0:

● v2.3.23pre3:
○ bootmem - a First Fit allocator which uses a bitmap to represent memory

https://www.kernel.org/doc/gorman/html/understand/understand008.html

From bootmem to memblock

● Placing bootmem bitmap was challenging
○ Which bank, which NUMA node?

○ Bitmap size (1M for 32G of RAM)

● Slow transition to memblock
○ Started in v2.5 with powerpc64

○ Intermediate NO_BOOTMEM compatibility layer

● Completed in v4.20

+ Static arrays instead of bitmap
➢ Can be used before memory configuration is known

+ Arbitrary granularity instead of page

Memblock vs bootmem

− Allocation logic is more complex
➢ But it’s ok, we should not have many of those anyway

− Implicit growth of data structures
➢ Too many early reservations may corrupt used memory

memblock structure

Bank 0 Bank 1 Bank 2 Bank 3

memory reserved

 base
 size
 flags
 nid

Basic APIs

● memblock_add(), memblock_add_node()
○ Register memory bank with memblock

● memblock_remove()
○ Make memory region invisible to the kernel

● memblock_reserve()
○ Mark used memory region as reserved

● memblock_free()
○ Mark memory region as free

Allocation APIs returning physical address

Functions that allocate memory and return its physical address:

● memblock_phys_alloc()
○ Allocate chunk of requested size with specified alignment

● memblock_phys_alloc_range()
○ Allocate a chunk within certain range

● memblock_phys_alloc_try_nid()
○ Allocate a chunk on a certain NUMA node

The memory is not cleared and may contain garbage!

Allocation APIs returning virtual address

Functions that allocate memory and return its virtual address:

● memblock_alloc_try_nid_raw(),
memblock_alloc_try_nid()
○ Allocate chunk of requested size with specified alignment from certain NUMA

node and within certain range

○ If constraints are too tight, try another node and then drop lower limit

● The “normal” variant clears the memory

● The ‘_raw’ variant does not!
○ Could be poisoned if VM debug is enabled

And their convenience wrappers

Functions that allocate memory, clear it and return its virtual address:

● memblock_alloc()
○ Allocate chunk of requested size with specified alignment

● memblock_alloc_from()
○ Allocate chunk above certain physical address

● memblock_alloc_low()
○ Allocate chunk in low memory

● memblock_alloc_node()
○ Allocate chunk in certain NUMA node

Convenience wrappers cont.

Function that allocates memory, and return its virtual address:

● memblock_alloc_raw()
○ Allocate chunk of requested size with specified alignment

● The memory is not cleared
○ Could be poisoned if VM debug is enabled

● memblock_find_in_range_node()
○ Find free area in given range and node

○ Traverses free memory areas

■ memory && !reserved
○ Can be top-down or bottom-up

● memblock_reserve() the area
○ Merge adjacent entries

○ Double reserved array if needed

Under the hood

Under the hood

● memblock_alloc_range_nid()
○ Try to find free memory with all the constraints

○ Retry on all nodes

○ Retry without mirroring requirement

■ Only on systems that support memory mirroring

○ Return physical address

● memblock_alloc_internal()
○ Try memblock_alloc_range_nid()
○ Retry without the lower bound

○ Return virtual address

Controlling memblock behaviour

● memblock_allow_resize()
○ Enable/disable resizing of memblock arrays

● memblock_set_bottom_up()
○ Set allocation direction (default is top-down)

● memblock_enforce_memory_limit()
● memblock_cap_memory_range()
● memblock_mem_limit_remove_map()
● memblock_set_current_limit()
● memblock_trim_memory()

Querying memblock state

● memblock_phys_mem_size(), memblock_reserved_size()
● memblock_start_of_DRAM(), memblock_end_of_DRAM()
● memblock_is_memory(), memblock_is_reserved()

○ Check for a given address

● memblock_is_region_memory(), memblock_is_region_reserved()
○ Check for a given range

● memblock_get_current_limit()
○ Get high limit for allowed allocations

Traversing memblock arrays

● for_each_free_mem_range(), for_each_free_mem_range_reverse()
○ Iterate over free memory areas

○ Take into account node and memory attributes

● for_each_reserved_mem_region()
○ Iterate over reserved memory areas

● for_each_mem_range(), for_each_mem_range_rev()
○ Iterate over intersection of memblock arrays

■ For example areas found in memory and absent in reserved
● for_each_mem_pfn_range()
● for_each_memblock()
● for_each_memblock_type()

Back to MM init

● Reserve used areas - memblock_reserve()
○ Kernel, initrd, firmware pages

● Detect and register physical memory - memblock_add()
○ Available banks, NUMA topology

● Set memblock parameters suitable for a machine
○ Limit to mapped memory, enforce bottom up allocations

● Use memblock_alloc() and friends to allocate memory

● Give pages to the buddy page allocator
○ memblock_free_all()
○ Usually called by arch specific mem_init()

References

● A quick history of early-boot memory allocators

● Boot Memory Allocator chapter
○ from “Understanding the Linux Virtual Memory Manager” by Mel Gorman

● Boot time memory management, kernel documentation

https://lwn.net/Articles/761215/
https://www.kernel.org/doc/gorman/html/understand/understand008.html
https://www.kernel.org/doc/gorman/
https://www.kernel.org/doc/html/latest/core-api/boot-time-mm.html

Thank you!

