
Embedded Linux Conference Europe

Integrating
HW-Accelerated Video
Decoding with the
Display Stack
Paul Kocialkowski
paul@bootlin.com

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/24

 



Paul Kocialkowski

▶ Embedded Linux engineer at Bootlin
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus

▶ Open-source contributor
▶ Co-maintainer of the cedrus VPU driver in V4L2
▶ Contributor to the sun4i-drm DRM driver
▶ Developed the displaying and rendering graphics with Linux training

▶ Living in Toulouse, south-west of France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/24

 



Integrating HW-Accelerated Video Decoding with the Display Stack

Outline and Introduction

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/24

 



Purpose of this talk

▶ Present our specific use case
▶ Some basics about video decoding
▶ How Linux supports dedicated hardware for it
▶ Our hardware, driver and constraints

▶ Provide an overview of video pipeline integration
▶ From source to sink
▶ With efficient use of the hardware
▶ Using the existing userspace software components

▶ Detail what went wrong
▶ Things don’t always pan out in the graphics world
▶ Sharing the pain points we encountered
▶ Constructive criticism, things could be a lot worse

Always look on the bright side of life

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/24

 



Purpose of this talk tl;dr

Let’s try and build a good pipeline, eh?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/24

 



You said video decoding?

▶ Sequences of pictures take a huge load of data to represent...
▶ So we compress them using a given codec:

▶ Color compression: YUV sub-sampling
▶ Spatial compression: frequency-space transform (DCT) and filtering
▶ Temporal compression: multi-directional interpolation
▶ Entropy compression: Huffman coding, Arithmetic coding

▶ Add some meta-data to the mix to get the bitstream
▶ Encapsulate that bitstream with other things (audio, ...) in a container
▶ Then we have a reasonable amount of data for a fair result!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/24

 



You said hardware video decoding?

▶ So now we need a significant number of operations to get back our frames
▶ Embedded systems don’t have that much CPU time to spare
▶ Hardware to the rescue: fixed-function decoder block implementations

▶ Digest video bitstream to spit out decoded pictures
▶ Implementations are per-codec (or per-generation)

▶ Two distinct types of hardware implementations:
▶ Stateful: with a MCU to parse raw meta-data from bitstream, keep track of buffers
▶ Stateless: that expect parsed metadata and compressed data only

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/24

 



Hardware video decoding in Linux (Media/V4L2)

▶ In Linux, hardware video decoders (aka VPUs) are supported in V4L2
▶ Support for stateful VPUs landed with the V4L2 M2M framework

▶ Adapted to memory-to-memory hardware
▶ Source (output) is bitstream, destination (capture) is a decoded picture

▶ Support for stateless VPUs landed with the Media Request API
▶ Meta-data is passed in per-codec V4L2 controls
▶ Controls are synchronized with buffers under media requests
▶ Source (output) is compressed data, destination (capture) is a decoded picture

▶ Decoded pictures are accessed:
▶ By the CPU through mmap on the destination buffer
▶ By other devices through dma-buf import of the destination buffer

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/24

 



The kind of expected result

H.265 hardware video decoding with UI integration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/24

 



What to do with decoded pictures

Video decoding is just the tip of the iceberg...
▶ Colorspace conversion (CSC) from YUV is often needed
▶ Scaling and composition with UI are also required
▶ These are awfully calculation-intensive

sometimes more than CPU-based video decoding
▶ But hey, we have hardware for that too:

▶ The display engine usually supports all these operations via overlays/planes
▶ Sometimes there are dedicated hardware blocks too
▶ The GPU can do anything, so it can do that too (right?)

▶ Let’s avoid copies and share buffers between devices
full-frame memory copies are just a big no-no for performance

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/24

 



Integrating HW-Accelerated Video Decoding with the Display Stack

Hardware video decoding on Allwinner platforms
and display stack integration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/24

 



Allwinner platforms

Community Allwinner boards from our friends at Olimex and Libre Computer

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/24

 



Our situation: the Allwinner side of things

▶ Relevant multimedia blocks on Allwinner hardware:
▶ Video decoder (VPU): fixed-function (stateless) implementation,

supports MPEG-2/H.263/Xvid/H.264/VP6/VP8, H.265/VP9 on recent SoCs
▶ Display engines: support multiple input overlays
▶ GPU: Mali 400/450 in most cases

▶ First generation of devices (A10-A33) comes with constraints:
▶ VPU can only map the lowest 256 MiB of RAM
▶ VPU produces pictures in a specific tiled scan order (aka MB32)
▶ Display engine supports MB32 tiling for planes/overlay

▶ Second generation (A33-A64+) doesn’t have these constraints:
▶ VPU still works with tiling internally, but untiling block is in the VPU

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/24

 



Allwinner MB32 tiled video format

0,0 w s

h

Linear (raster) scan order

▶ w: width, s: stride
▶ h: height

0,0 w wt = s

h

ht

MB32-tiled scan order

▶ wt: tile-aligned width (stride)
▶ ht: tile-aligned height

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/24

 



Bootlin’s contribution for hardware video decoding support

▶ On the DRM kernel side:
▶ DRM_FORMAT_MOD_ALLWINNER_TILED modifier (merged in 5.1)
▶ sun4i-drm support for linear/tiled YUV formats in overlay planes (merged in 5.1)

▶ On the V4L2 kernel side:
▶ Cedrus base driver (merged in 5.1)
▶ V4L2_PIX_FMT_SUNXI_TILED_NV12 pixel format (merged in 5.1)
▶ Experimental stateless MPEG-2 API and cedrus support (merged in 5.1)
▶ Experimental stateless H.264 API and cedrus support (merged in 5.3)
▶ Experimental stateless H.265 API and cedrus support (to be merged in 5.5)

▶ On the userspace side:
▶ A test utility: v4l2-request-test

https://github.com/bootlin/v4l2-request-test
▶ A VAAPI backend: libva-v4l2-request

https://github.com/bootlin/libva-v4l2-request

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/24

 

https://github.com/bootlin/v4l2-request-test
https://github.com/bootlin/libva-v4l2-request


Integrating HW-Accelerated Video Decoding with the Display Stack

Investigated and/or implemented setups

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/24

 



Bare-metal pipeline setup

▶ Test scenario: standalone dedicated application (v4l2-request-test)
▶ Talks to the kernel directly (both V4L2 and DRM)
▶ Uses dma-buf for zero-copy

▶ Exported from V4L2 with the VIDIOC_EXPBUF ioctl
▶ Imported to DRM with the DRM_IOCTL_PRIME_FD_TO_HANDLE ioctl

▶ CSC, scaling and composition offloaded using DRM planes
▶ Bottomline: all is well but very limited use-case (testing)

Pipeline components overview:
V4L2 v4l2-request-test DRM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/24

 



X.org pipeline setup (GPU-less): investigation

▶ Scenario: usual media players (using VAAPI) under X
▶ Can we use a similar setup (dma-buf to DRM plane) under X?

▶ X initially only knows about RGB formats
▶ But extensions exist: Xv, DRI3

▶ Xv extension allows supporting YUV and scaling, but...
▶ Requires writing a hardware-specific DDX (e.g. to use planes)
▶ Requires a buffer copy and doesn’t support modifiers
▶ Has synchronization issues and deprecated anyway (in favor of GL)

▶ DRI3 supposedly can solve these points:
▶ Supports dma-buf import (but no modifier support)
▶ Currently apparently only implemented in glamor (GPU-backed)
▶ Doesn’t give us access to a DRM planes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/24

 



X.org pipeline setup (GPU-less): bottomline

▶ Scenario: usual media players (using VAAPI) under X
▶ What worked:

▶ Software untiling (NEON-accelerated) in VAAPI backend
▶ Software-based CSC, scaling and composition
▶ Buffer copies through XCB

▶ As a result, performance sucks
still surprisingly good without scaling involved

Pipeline components overview:

V4L2 VAAPI FFmpeg VLC
X.org
(XCB)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/24

 



Improving the X.org pipeline with a GPU in the mix

▶ Using the GPU shall speed things up
▶ Requires using the xf86-video-armsoc DDX
▶ Only accelerates rendering, not composition using GL (glamor)

▶ First try: importing YUV with the GPU and untiling
▶ Lack of/undocumented blob support for YUV format
▶ Zero-copy (dma-buf) import supported by the blob only for RGB formats

▶ Second try: importing as 8-bit component (luminance) and untiling
▶ Wrote an untiling shader that just works on Intel GPUs
▶ Zero-copy (dma-buf) not supported for (GL_LUMINANCE)
▶ Copy import (glTexImage2D) for GL_LUMINANCE failed

apparently a weird undocumented issue due to Mali constraints
▶ Untiling shader never worked with the Mali (tl;dr)

▶ Bottomline:
▶ GPU didn’t help, for reasons we can’t fix
▶ Perhaps a free driver (Lima) would help?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/24

 



But what about Wayland?

▶ Didn’t investigate/implement at the time of the project
▶ Wayland’s relationship with DRM planes:

▶ Planes are not exposed to applications
▶ But might be used by the compositor internally

▶ Zero-copy buffer import from devices:
▶ Exposed with the linux-dmabuf extension, zwp_linux_dmabuf_v1 interface
▶ Modifiers are supported by the protocol
▶ libweston implementation calls EGL_EXT_image_dma_buf_import_modifiers
▶ Requires GPU hardware support for the modifier

▶ Bottomline: unusable for our (GPU-less) use case

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/24

 



Kodi pipeline

▶ Kodi (media center) relies on GPU support, compatible with Mali blob
▶ Kodi supports the GBM EGL backend

▶ Allows using GL with DRM as output surface
▶ Used for drawing the UI
▶ Video CSC/scaling/composition uses a plane directly
▶ Supports dma-buf import from FFmpeg

▶ Required plumbing to get it to work:
▶ FFmpeg hwaccel support to use our V4L2-exposed codec (through VAAPI)

▶ Bottomline: it works great!

Pipeline components overview:
V4L2 VAAPI FFmpeg Kodi DRM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/24

 



General takeaway

▶ Planes support is never exposed to applications
at best supported and hidden by the compositor

▶ Modifier support is still very rare in userspace
▶ Strong incentive all around the userspace stack to use GL

the unified way to integrate graphics
▶ But GPU support does not always solve the issue:

▶ Life’s much harder when it’s a proprietary blob
▶ Lack of usable dma-buf import support
▶ Bugs and limitations

▶ Some projects try to make use of planes easier:
▶ libliftoff, liboutput
▶ Microchip’s Ensemble Graphics Toolkit: https://ensemble.graphics/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/24

 

https://ensemble.graphics/


Questions? Suggestions? Comments?

Paul Kocialkowski
paul@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/24

https://bootlin.com/pub/conferences/

	Integrating HW-Accelerated Video Decoding with the Display Stack
	Outline and Introduction
	Hardware video decoding on Allwinner platforms and display stack integration
	Investigated and/or implemented setups


