
Low Level Sensor Programing and 

Security Enforcement with MRAA

Brendan Le Foll <brendan.le.foll@intel.com>



Agenda

• What’s mraa/mraa.io/libmraa

• Why / What / Where

• Mraa on peripheral manager (PIO)

• Mraa with AGL’s AFB

• Future



Mraa.io - 101

• Simple userspace I/O protocol control for:

– Gpio, i2c, SPI, ADCs, PWM, UART, 1-Wire

• Made for monkeys – easier is better

• Bindings for C, Python (2 & 3), node.js, & java

• Supports a large number of development boards, 

platforms, daughterboards & expansion boards



Libmraa - C API

void set_gpio_high(int num)

{

mraa_gpio_context gpio;

gpio = mraa_gpio_init(num);

mraa_gpio_dir(gpio, MRAA_GPIO_OUT);

mraa_gpio_write(gpio, 1);

mraa_gpio_close(gpio);

}

4



Libmraa - C++

mraa::Gpio* gpio0 = new mraa::Gpio(8);

gpio0->dir(mraa::DIR_OUT);

gpio0->write(1);

5



Libmraa – Object API pt.1 (Python)

from mraa import * 

x = Gpio(8) 

x.dir(DIR_OUT) 

x.write(1)

x = "memory is not my problem!"

6



Libmaa – Object API pt.2 (Python)

from mraa import *
def hello():
print("You do not talk about the 

GIL")

x = Gpio(8)
x.dir(DIR_IN)
x.isr(EDGE_BOTH, hello)

7



Why?

• Unified API

• Demo of http://mraa.io/demo



Sensor Library – “UPM"

• http://upm.mraa.io

– Sensor browser/integration

– Documentation / quirks

– Links to datasheets etc…

• Mostly C++ (some C), java, node.js, 

python
Yellow Mongoose - Tony Hisgett from Birmingham, UK (CC BY 
2.0)

http://upm.mraa.io/


(some) supported boards

1
0



Adding a board
• There are 3 ways to use your board with mraa

• Raw mode, without a platform configuration you can use mraa but no pinmuxing or platform 

configuration will be done or known. However you can still access your platform IO and this is 

very useful for testing as well as writing a new platform configuration

• C platform configuration, there are many examples of how to add a mraa_board_t and load it, 

it’s surprisingly easy and many companies & individuals have managed to do it on their own 

unassisted by ourselves. Depending on platform complexity a mraa_board_t must be 

complemented by an advanced function array which can override mraa’s default IO functions. 

This is very useful in complex platforms such as Edison or where there are hardware oddities to 

overcome. Mraa can either be configured with just one platform or with all platforms from that 

architecture.

• Json file, mraa configuration files for ‘simple’ platforms will be able to provide everything via a 

json file that is loaded via mraa_load_platform(“myconfig.json”) using the same configuration 

format as imraa



Android Things (a.k.a Brillo/Weave)

1
2

Libmraa 
w/periphmraa

backend

Binder

Peripheralmanager

Application (java)

Linux Kernel

mraajava



libmraa + AFB



AFB – Application Framework Binder

1
4

The binder provides the way to connect applications to the services 
that it needs.
It provides a fast way to securely offer APIs to applications written 
in any language and running almost anywhere.
The binder is developed for AGL.
The binder is the usual name.
The binary is named afb-daemon.
The name afb-daemon stands for Application Framework Binder 
Daemon.
The word daemon, here, denote the fact that the binder makes 
witchcraft to connect applications to their expected services.
(note: that usually the term of daemon denotes background 
process but not here).
Each binder afb-daemon is in charge to bind one instance of an 
application or service to the rest of the system, applications and 
services.
Within AGL, the connection between services and/or applications is 
tuned by the AGL framework and the AGL system.

Application

Binder
afb-daemon

Security
Context

wshttp

binding

binding

binding



Libmraa + AFB architecture

1
5

Libmraa w/AFB 
backend

Binder
afb-daemon

Security
Context

wshttp

af-mraa-binding
Libmraa (normal)

Application

Linux Kernel



Libmraa + AFB (complex)

1
6

Libmraa w/AFB 
backend

Binder
afb-daemon

Security
Context

Libmraa (firmata)

UPM
sensor

Linux Kernel

Application

UART

Firmata board UART

Security Context

Binder
afb-daemon

af-mraa-binding



Integrating AFB as a backend
• Mraa has support for platforms to override default behaviour, we do this for odd 

platforms (Quark X1000), old non standard kernels (Rpi) or because we’re not talking 

to the linux kernel directly at all (firmata, d2xx, peripheralmanager)

• The AGL ‘platform’ in mraa is compiled in with the –DBUILDARCH=“AFB”, this will 

trigger all future calls to mraa calls to go through to the AFB bus to the af-mraa-

binding.

• The AGL ‘platform’ overrides all functionality in mraa so mraa_i2c_init no longer does 

anything with /dev/i2c-n

• Synchronizes afb_wsj1_call_s calls

i2c_mraa_init()
board-

>i2c_mraa_init()
board_i2c_init()



af-mraa-binding
• Af-mraa-binding initializes a ‘normal’ libmraa build against a real –DBUILDARCH. All 

the build architectures are supported

• Therefore you need two builds of libmraa, one to link against af-mraa-binding and 

another to link to your application

• Uses wrapjson from afb-utilities



Future
• Currently the AGL platform in mraa has no knowledge of what is actively supported so 

querying the platform with mraa-i2c or mraa-gpio does not work, the underlying 

platform API has to be called for this

• The binding is simplistic, it only exposes two verbs, “dev-init” to initialize a mraa

context, and “command” to run a mraa command against an initialized context

• Mraa calls are mostly all blocking so calls to afb_wsj1_call_s require a lock to grab the 

response, currently some calls assume that the action is successful rather than really 

checking the response from the hardware

• Only some of mraa’s functionality is supported 100% (i2c)



More info

• http://github.com/intel-iot-devkit/mraa

• http://github.com/intel-iot-devkit/af-mraa-

binding

• upm.mraa.io

• IRC: Freenode #mraa

• ML: mraa@lists.01.org

http://github.com/intel-iot-devkit/mraa
http://github.com/intel-iot-devkit/af-mraa-binding



