€mbedded Linux
Conference
Europe

Low Level Sensor Programing and
Security Enforcement with MRAA

Brendan Le Foll <brendan.le.foll@intel.com>

THE

L LINUX

FOUNDATION

- What's mraa/mraa.io/libmraa
 Why / What / Where

» Mraa on peripheral manager (PIO)
* Mraa with AGL's AFB

* Future

Mraa.io - 101

» Simple userspace |I/O protocol control for:
— Gpio, i2c, SPI, ADCs, PWM, UART, 1-Wire

» Made for monkeys — easier Is better
» Bindings for C, Python (2 & 3), node.|s, & jJava

» Supports a large number of development boards,
platforms, daughterboards & expansion boards

THE
L I LINUX
FOUNDATION

Libmraa - C API

Intel Edison module

70-pin connector

void set gpio high(int num)

o 0 SoC mods o) 0 SoC mode
opin) [SRS i 0] ¢ (ropiny [SRS inuyg 0 T 2
1 GND 36 RESET_OUT#
. ° 2 VSYS a7 GP182_PWM2 | 182 GPIO. PWM_2
mraa_gplo_context gpio; — e
, 4 VSYS 38 GP1B3 PWM3 | 183 | Gmo | pwma |
b _— 5 GND [0 UNUSED
[VSYS a GP19 19 GPIO.
° ° ° ° 7 |msic_sLp_cLKs a2 GP15 15 GPIO.
10 = mraa_gpio_1init(num); — e
- J o GND. 4 [84 GPIO
10 3.3V 45 GP27 27 GPIO kasd
11 GND % GP131 131)
L o L4 12 18V 47 GP28 28 GPIO
mraa io_dir(gpio, MRAA_GPIO_OUT); 4= e A =
— —) _ — J i DCIN a9 UNUSED
15 GND 50 GPaz a2 GPIO.
18 UsB_DP 51 GPi11 11 GPIO.
° ° ° 17 PWRBTN: 52 GP40 40 GPio
mraa 10_write 1o, 1); o = e
— — , ’ 19 FAULT 54 GP41 41 GPIO
20 USE_VBUS 55 GP109 109 GPIO.
21 PSW 56 GPa3) GPio
L L4 . 22 GP13a 138) UARTZRX | 57 GP115 115 GPIO 1
mraa io close io B 2 Eamemer
— — J 24 GPad s GPi0) GPi14 14 GPIo. SP1_2_RXD
25 GP16s 165 GPIO 50 GP7T 70 GPIO. SD_0_C0#
26 GPas a5 GrIo 51 GP130 130 GPIO. UART_1_RX
27 GP135 135 GPIO UART2_TX 62 GPT9 T GPIO SD_0_CMD
28 P46 46 GPio 65 GPi20 120 GPi0__| UART_IRTS
29 UNUSED 64 GP82 82 GPIO SD_D_DAT2
30 GPaT a7 | emo | [65 GP128 128 GO | uART 1.cT8
31 RCVR_MODE 66 GPBO B0 GPIO SD_0_DATO
32 GPaa 3 P 67| 056_cLK_ouT 0
33 | ePipwm | 13 GPio Pm_t 68 () 83 GPio SD_o_DAT3
34 GPas) GPio) FW_RCVR
35| GPizPwM0 | 12 P PwM_0 70 GPst 81 = SD_0_DAT1

mraa: :Gpio* gpio® = new mraa::Gpio(8)
gpio@->dir(mraa: :DIR _OUT);
gpio@->write(1);

Libmraa — Object API pt.1 (Python)

from mraa import *
X = Gpio(8)
x.dir(DIR_OUT)
X.write(1)

X

"memory 1s not my problem!”

A

Libmaa — Object API pt.2 (Python)

from mraa import *

def hello():
print("You do not talk about the

GIL")
X = Gpio(8)
x.dir(DIR_IN) =)
X.1isr(EDGE_BOTH, hello) L=
O

* Unified API
* Demo of http://mraa.io/demo

Sensor Library — "UPM"

* http://upm.mraa.io
— Sensor browser/integration
— Documentation / quirks
— Links to datasheets etc...

* Mostly C++ (some C), java, node.js,
python

Yellow Mongoose - Tony Hisgett from Birmingham, UK (CC BY
2.0)

THE
L LINUX

FOUNDATION

http://upm.mraa.io/

(some) supported boards

Adding a board

There are 3 ways to use your board with mraa

Raw mode, without a platform configuration you can use mraa but no pinmuxing or platform
configuration will be done or known. However you can still access your platform 10 and this is
very useful for testing as well as writing a new platform configuration

C platform configuration, there are many examples of how to add a mraa_board_t and load it,
it's surprisingly easy and many companies & individuals have managed to do it on their own
unassisted by ourselves. Depending on platform complexity a mraa_board_t must be
complemented by an advanced function array which can override mraa’s default 10 functions.
This is very useful in complex platforms such as Edison or where there are hardware oddities to
overcome. Mraa can either be configured with just one platform or with all platforms from that
architecture.

Json file, mraa configuration files for ‘simple’ platforms will be able to provide everything via a
json file that is loaded via mraa_load_platform(“myconfig.json”) using the same configuration
format as imraa

THE

L LINUX

FOUNDATION

Android Things (a.k.a Brillo/Weave)

Libmraa
w/periphmraa mraajava Application (java)
backend

) 4
.
0

—

Peripheralmanager

THE
1 I LINUX
FOUNDATION

libmraa + AFB

THE
i LINUX
FOUNDATION

AFB — Application Framework Binder

Application

Security
Context

binding

binding

binding

The binder provides the way to connect applications to the services
that it needs.
It provides a fast way to securely offer APIs to applications written
in any language and running almost anywhere.
The binder is developed for AGL.
The binder is the usual name.
The binary is named afb-daemon.
The name afb-daemon stands for Application Framework Binder
Daemon.
The word daemon, here, denote the fact that the binder makes
witchcraft to connect applications to their expected services.
(note: that usually the term of daemon denotes background
process but not here).
Each binder afb-daemon is in charge to bind one instance of an
application or service to the rest of the system, applications and
services.
Within AGL, the connection between services and/or applications is
tuned by the AGL framework and the AGL system.

L JLiNuX

FOUNDATION

Libmraa + AFB architecture
- ~
sorvaswines | sty

Libmraa (normal)

J

THE
1 I LINUX
FOUNDATION

Libmraa + AFB (complex)
/
af-mraa-binding
/ Security|Context

Libmraa (firmata)

UPM Libmraa w/AFB

Al sensor backend

Security

k Context

Linux Kernel

ﬁ ART H L]uhex

Integrating AFB as a backend

* Mraa has support for platforms to override default behaviour, we do this for odd
platforms (Quark X1000), old non standard kernels (Rpi) or because we’re not talking
to the linux kernel directly at all (firmata, d2xx, peripheralmanager)

 The AGL ‘platform’ in mraa is compiled in with the -DBUILDARCH="AFB?”, this will
trigger all future calls to mraa calls to go through to the AFB bus to the af-mraa-
binding.

+ The AGL ‘platform’ overrides all functionality in mraa so mraa_i2c_init no longer does
anything with /dev/i2c-n

« Synchronizes afb_wsjl _call_ s calls

THE

L LINUX

FOUNDATION

af-mraa-binding

Af-mraa-binding initializes a ‘normal’ libmraa build against a real -DBUILDARCH. All
the build architectures are supported

Therefore you need two builds of libmraa, one to link against af-mraa-binding and
another to link to your application

« Uses wrapjson from afb-utilities

THE

L LINUX

FOUNDATION

Future

* Currently the AGL platform in mraa has no knowledge of what is actively supported so
querying the platform with mraa-i2c or mraa-gpio does not work, the underlying
platform API has to be called for this

« The binding is simplistic, it only exposes two verbs, “dev-init” to initialize a mraa
context, and “command” to run a mraa command against an initialized context
* Mraa calls are mostly all blocking so calls to afb_wsj1_call s require a lock to grab the

response, currently some calls assume that the action is successful rather than really
checking the response from the hardware

* Only some of mraa’s functionality is supported 100% (i2c)

THE

L LINUX

FOUNDATION

* http://qithub.com/intel-iot-devkit/mraa

* http://qithub.com/intel-iot-devkit/af-mraa-
pinding

* upm.mraa.io
IRC: Freenode #mraa
ML: mraa@lists.01.org

http://github.com/intel-iot-devkit/mraa
http://github.com/intel-iot-devkit/af-mraa-binding

&3

Embedded Linux
Conference

Europe

THE
LINUX
L d RRONoAToN

