
 Adventures In Real-Time
 Performance Tuning, Part 2
The real-time for Linux patchset does not guarantee adequate real-time
behavior for all target platforms. When using real-time Linux on a new
platform you should expect to have to tune the kernel and drivers to
provide performance that matches your specific requirements.

Part 1, presented at ELC 2008, provided an example of the trials
and tribulations of the tuning journey for a MIPS target board.

Part 2 will provide additional examples of methods to debug and tune
latency. An additional target for this installment is an SMP ARM board,
leading to a new set of challenges.

 Frank Rowand, Sony Corporation of America November 7, 2008

 Adventures In Real-Time
 Performance Tuning, Part 2

With thanks to the Sony SS kernel team in
Tokyo for their contributions to this tuning and
debugging process.

 Overview

Background and Definitions

Some Tuning Strategies and Tactics

Examples of Tuning

 Quick Summary of Part 1

Examples of using the old latency instrumentation
from the RT patchset to tune latency

 /proc/latency_hist/interrupt_off_latency/CPU*

 /proc/latency_trace

The new, improved “ftrace” instrumentation appears
in the RT patchset 2.6.24-rt2 and mainline 2.6.27-rc1

 Quick Summary of Part 1

Characterization of the (large) overhead of latency
instrumentation

Tuning a component of overall latency (micro-tuning)
can have a negative impact on the overall latency

The value of data visualization (graphs) vs. basic
statistics such as min, max, avg, std deviation.

 What Is Different

part 1

 Linux 2.6.24, MIPS target, UP

part 2

 Linux 2.6.23, ARM target, SMP

 What is Real Time?

It is determinism (being able to respond to a
stimulus before a deadline) within a given
system load envelope.

It is NOT fast response time.

The specific real time application deadlines
determine how short the maximum response
time must be to deliver real time behavior.

Some examples of deadlines are one second,
one millisecond, or five microseconds.

 RT latency is the delay from
 stimulus to when the RT
 “application” is executing code

 RT latency is the delay from
 stimulus to when the RT
 “application” is executing code

Possible RT application contexts include

 - driver interrupt context
 - driver thread context
 - kernel thread context
 - user space thread context

 RT latency is the delay from
 stimulus to when the RT
 “application” is executing code

The components that add up to RT latency are
important to the tuning process, but keep in
mind the goal of tuning actual RT latency.

 Some components that may
 contribute to RT latency

 - IRQ disabled time
 - preempt disabled time
 - IRQ latency, from event until bottom half
 - RT driver bottom half(s) execution
 - non-RT driver bottom half(s) execution
 - task switch time

 Some components that may
 contribute to RT latency

 - IRQ disabled time
 - preempt disabled time
 - IRQ latency, from event until bottom half
 - RT driver bottom half(s) execution
 - non-RT driver bottom half(s) execution
 - task switch time

The components that add up to RT latency are
important to the tuning process, but keep in
mind the end goal of tuning actual RT latency.

Strategy: Compare Kernel Versions

Use Case #1

I'm stuck on kernel version 2.6.n, but there are
reports on the linux-rt-users email list that
performance on version 2.6.n + 3 is much
better.

Is there some fix that I can port to my kernel version?

Strategy: Compare Kernel Versions

Use Case #2

I moved forward from kernel version 2.6.n to
2.6.n+1 and performance got worse.

Tactics

 #1 Compare kernel config options

Tactics

 #1 Compare kernel config options

 #2 Compare the behavior and/or performance
 metrics

Raw Interrupt Latency

Latency of timer interrupt to interrupt bottom half
execution.

Raw Interrupt Latency

Latency of timer interrupt to interrupt bottom half
execution.

Problem: latency increased from 6 usec to 11 usec
 on move from 2.6.22 to 2.6.23

Raw Interrupt Latency

Latency of timer interrupt to interrupt bottom half
execution.

Problem: latency increased from 6 usec to 11 usec
 on move from 2.6.22 to 2.6.23

Disclaimer: all kernel versions in this presentation
 are based on kernel.org, but with
 patches added, so these results may not
 be repeatable on kernel.org versions

Tactics

 #1 Compare kernel config options

 #2 Compare the behavior and/or performance
 metrics

Revert the config differences, starting with the
most likely culprits.

Metric: raw interrupt latency.

Results

 option value usec

 NR_CPUS 4 -> 2 9/10 -> 9

 NO_HZ y -> n 9 -> 6

 PREEMPT_RCU_BOOST y -> n 6 -> 5

 SLAB -> SLOB 5/6 -> 5

 others no big affect

Task Wake Up Time

Goal: average task wake up time < XXX usec

Task Wake Up Time

Goal: average task wake up time < XXX usec

Problem: actual task wake up time >> XXX usec

Task Wake Up Time

Goal: average task wake up time < XXX usec

Problem: actual task wake up time >> XXX usec

Observation:

 2.6.22 avg: 23 usec max: 33 usec
 2.6.23 avg: 72 usec max: 244 usec

Tactics

 #1 Compare kernel config options

 #2 Compare the behavior and/or performance
 metrics

 #3 Compare the source code
 - the real-time patch set
 - the base kernel

 #3b Read the current version of the source code

Task Wake Up Test (simplified)

/* producer kernel thread, SCHED_FIFO, priority = 98 */

pthread() {
 counter = 10000;

 while (counter-- > 0) {
 mbx->timestamp = read_time();
 set_current_state(TASK_UNINTERRUPTIBLE);
 wake_up_process(ctsk);
 schedule_timeout(DELAY);
 }

 done = 1;
 wake_up_process(ctsk);
}

Task Wake Up Test (simplified)

/* consumer kernel thread, SCHED_FIFO, priority = 99 */

cthread() {

 while (1) {
 delta = read_time() - mbx->timestamp;
 update_stats(delta);
 set_current_state(TASK_UNINTERRUPTIBLE);
 if (done)
 break;
 schedule();
 }

 report_stats();
}

2.6.23 Task Wake Up Time

Intuitive Leap 1

Which processor is each thread on?

Intuitive Leap 1

Which processor is each thread on?

(Ignoring the strategy and tactics for a moment!)

Methodology (M1)

(M1) Instrument the test application

 Add mbx->cpu

 Producer sets to current cpu

 Consumer compares to current cpu

Result (M1)

 --- producer ---
consumer cpu 0 cpu 1
-------- ---------- ----------
 cpu 0 0 5000
 cpu 1 4999 1

This may be good - each task is on its own
processor.

Result (M1)

 --- producer ---
consumer cpu 0 cpu 1
-------- ---------- ----------
 cpu 0 0 5000
 cpu 1 4999 1

This may be good - each task is on its own
processor.

Next Question:
 How frequently did producer move between cpus?

Methodology (M2)

(M2) Instrument the test application some more

 Log producer and consumer cpu for each iteration

Result (M2)
producer cpu map:
#
0 01
70 01
140 01
210 01
280 01
350 01
420 01
490 01
560 01
630 01
700 01
#
consumer cpu map:
#
0 10
70 10
140 10
210 10
280 10
350 10
420 10
490 10
560 10
630 10
700 10

Result (M2)
producer cpu map:
#
0 01
70 01
#
consumer cpu map:
#
0 10
70 10

Result (M2)
producer cpu map:
#
0 01
70 01
#
consumer cpu map:
#
0 10
70 10

 Excessive migration is usually not good.

Compare to 2.6.22

 --- producer ---
consumer cpu 0 cpu 1
-------- ---------- ----------
 cpu 0 10000 0

(Returning to the strategy and tactics.)

Compare to 2.6.22
producer cpu map:
#
0 00
70 00
#
consumer cpu map:
#
0 00
70 00

 Fix (F1)

Set processor affinity for pthread() and cthread()

 Fix (F1)

Set processor affinity for cthread() and pthread()

Goal: verify that task migration is the cause of
the increased task wake up time.

 Fix Result (F1)
 producer consumer task switch usec
 cpu cpu ----------------
 affinity affinity avg max
 -------- -------- ---- ----
 x x 69 147 baseline
 x x 68 159 baseline

 Fix Result (F1)
 producer consumer task switch usec
 cpu cpu ----------------
 affinity affinity avg max
 -------- -------- ---- ----
 x x 69 147 baseline
 x x 68 159 baseline

Each line is a 10000 iteration test run result.

This data does not match the original problem
statement (avg 72, max 244) due to changes
in kernel configuration.

 Fix Result (F1)
 producer consumer task switch usec
 cpu cpu ----------------
 affinity affinity avg max
 -------- -------- ---- ----
 x x 69 147 baseline
 x x 68 159 baseline

 0 0 39 64
 0 0 40 108

 Fix Result (F1)
 producer consumer task switch usec
 cpu cpu ----------------
 affinity affinity avg max
 -------- -------- ---- ----
 x x 69 147 baseline
 x x 68 159 baseline

 0 0 39 64
 0 0 40 108

 1 1 40 94
 1 1 39 45

 0 1 40 66
 0 1 36 80

 1 0 31 68
 1 0 32 68

 Fix Result (F1)

 Fix Result (F1)

 Fix Conclusions (F1)

Processor migration increases task wake up
time significantly.

 Fix Conclusions (F1)

Processor migration increases task wake up
time significantly.

But setting processor affinity for a large number
of real-time tasks is not a desired solution for the
problem.

 Fix Conclusions (F1)

Processor migration increases task wake up
time significantly.

But setting processor affinity for a large number
of real-time tasks is not a desired solution for the
problem.

And task wake up time still larger than on 2.6.22.

 Recall Tactic #1

Examine how the kernel source changed.

 Recall Tactic #1

Examine how the kernel source changed.

The real-time scheduler became more aggressive
about moving tasks between processors.

 Recall Tactic #1

Examine how the kernel source changed.

The real-time scheduler became more aggressive
about moving tasks between processors.

Possible fix: revert to the old scheduler algorithm.

 Recall Tactic #1

Examine how the kernel source changed.

The real-time scheduler became more aggressive
about moving tasks between processors.

Possible fix: revert to the old scheduler algorithm.

But moving to older versions is not the direction
that I want to go...

So attempt to improve the current version.

 2.6.23 Real Time Scheduler

When a real time task wakes a higher priority
real time task the real-time scheduler prefers to
not push the (lower priority) currently running task
to another processor.

 2.6.23 Real Time Scheduler

When a real time task wakes a higher priority
real time task the real-time scheduler prefers to
not push the (lower priority) currently running task
to another processor.

The assumption is that the running process is cache
hot and the newly awakened process is cache cold.

 Revisit Test
P: producer thread, priority = 98
C: consumer thread, priority = 99
TI: timer interrupt handler

P [98]: set_current_state(TASK_UNINTERRUPTIBLE)
P [98]: wake_up_process(consumer)
 C: [99]: consumer may preempt producer
 or may be pushed to other processor
 C: [99]: processes message
 C: [99]: schedule()
P [98]: schedule_timeout()
 TI [--]: timer irq, wake_up_process(producer)
P [98]: create next message

 Fix (F2)

May allow consumer to remain on the same
processor as the producer.

select_task_rq_rt()

+ /*
+ * If current task on this CPU is about to sleep,
+ * next task should run on this CPU.
+ */
+ if (current->state != TASK_RUNNING) {
+ int cpu = smp_processor_id();
+ if (cpu_isset(cpu, p->cpus_allowed))
+ return cpu;
+ }

 Fix Result (F2)
 task wake up usec
 producer consumer -----------------
 cpu cpu avg max
 -------- -------- ---- ----
 x x 69 147 baseline
 x x 68 159 baseline

 0 0 39 64 Fix F1
 0 0 40 108 Fix F1
 1 1 40 94 Fix F1
 1 1 39 45 Fix F1

 x x 23 63 Fix F2
 x x 23 65 Fix F2

 Fix Result (F2)

producer and consumer always on same cpu,
instead of always on the other cpu

-- producer ------------
consumer cpu 0 cpu 1
-------- ---------- ----------
cpu 0 5168 0
cpu 1 0 4832

 Fix Result (F2)

producer and consumer always on same cpu,
instead of always on the other cpu

-- producer ------------
consumer cpu 0 cpu 1
-------- ---------- ----------
cpu 0 5168 0
cpu 1 0 4832

How often does migration occur?
 One migration per test run?
 One migration per message?

 Result (M2)
producer cpu map:
#
0 001010101000000000010011
70 1100000000000000000000
140 00000000000011
210 11111111100011
280 11000000000000000000000000000000
350 0001
420 0011
490 11111111111111111111111111111100
560 00010011111111
630 11
700 1111111111111111111100
#
consumer cpu map:
#
0 001010101000000000010011
70 1100000000000000000000
140 00000000000011
210 11111111100011
280 11000000000000000000000000000000
350 0001
420 0011
490 11111111111111111111111111111100
560 00010011111111
630 11
700 1111111111111111111100

 Result (M2)
producer cpu map:
#
0 00101010100000000001001111111111111111
70 11111111111111111111111111111111111111
140 00000000000011111111111111111111111111
#
consumer cpu map:
#
0 00101010100000000001001111111111111111
70 11111111111111111111111111111111111111
140 00000000000011111111111111111111111111

Occasional migration, but producer and consumer
always on same cpu

 Revisit Test, in more detail

P: producer thread, priority = 98
C: consumer thread, priority = 99
TI: timer interrupt handler, irq context
TT: timer interrupt handler, thread context, priority = 50

P [98]: set_current_state(TASK_UNINTERRUPTIBLE)
P [98]: wake_up_process(consumer)
 C: [99]: consumer preempts producer
 producer may be pulled by other processor
 C: [99]: processes message
 C: [99]: schedule()
P [98]: schedule_timeout()
 TI [--]: timer irq
 TT [50]: wake_up_process(producer)
 producer may be pushed to other processor
P [98]: create next message

 Revisit Test, in more detail

Possible double migration for producer.

P: producer thread, priority = 98
C: consumer thread, priority = 99
TI: timer interrupt handler, irq context
TT: timer interrupt handler, thread context, priority = 50

P [98]: set_current_state(TASK_UNINTERRUPTIBLE)
P [98]: wake_up_process(consumer)
 C: [99]: consumer preempts producer
 producer may be pulled by other processor
 C: [99]: processes message
 C: [99]: schedule()
P [98]: schedule_timeout()
 TI [--]: timer irq
 TT [50]: wake_up_process(producer)
 producer may be pushed to other processor
P [98]: create next message

Methodology (M3)

Verify double migration theory

Result (M3)

Adding further instrumentation to the producer
task verified the suspected additional task
migration.

 Fix (F3)

Modify kernel/sched_rt.c algorithms to
make real-time process migration less aggressive

 Fix (F3)

Define “overloaded”, for purposes of pushing RT
tasks, as:

 number of tasks on RT run queue

 >= CONFIG_RT_OVERLOAD

 Fix (F3)

Define “overloaded”, for purposes of pushing RT
tasks, as:

 number of tasks on RT run queue
 with priority > (MAX_USER_RT_PRIO / 2)

 >= CONFIG_RT_OVERLOAD

 Fix (F3)

Define “overloaded”, for purposes of pushing RT
tasks, as:

 number of tasks on RT run queue
 with priority > (MAX_USER_RT_PRIO / 2)

 >= CONFIG_RT_OVERLOAD

instead of

 number of tasks on RT run queue > 0

 Fix (F3)

Define “overloaded”, for purposes of pushing RT
tasks, as:

 number of tasks on RT run queue
 with priority > (MAX_USER_RT_PRIO / 2)

 >= CONFIG_RT_OVERLOAD

The priority of many kernel threads is:

 MAX_USER_RT_PRIO / 2

#define MAX_USER_RT_PRIO CONFIG_MAX_USER_RT_PRIO

MAX_USER_RT_PRIO / 2 == 50

 PID CMD RTPRIO CLS

 3 [migration/0] 99 FF
 4 [posix_cpu_timer] 99 FF
 5 [softirq-high/0] 50 FF
 6 [softirq-timer/0] 50 FF
 7 [softirq-net-tx/] 50 FF
 8 [softirq-net-rx/] 50 FF
 9 [softirq-block/0] 50 FF
 10 [softirq-tasklet] 50 FF
 11 [softirq-sched/0] 50 FF
 12 [softirq-rcu/0] 50 FF
 13 [watchdog/0] 99 FF
 27 [events/0] 1 FF
 71 [krcupreemptd] 1 FF
 94 [IRQ-125] 50 FF
 103 [IRQ-152] 99 FF

 Fix Result (F3)
 task wake up usec
 producer consumer -----------------
 cpu cpu avg max
 -------- -------- ---- ----
 x x 69 147 baseline
 x x 68 159 baseline

 x x 23 63 Fix F2
 x x 23 65 Fix F2

 x x 23 33 2.6.22

 x x 21 41 Fix F3
 x x 21 25 Fix F3

 Fix Result (F3)
 task wake up usec
 producer consumer -----------------
 cpu cpu avg max
 -------- -------- ---- ----
 x x 69 147 baseline
 x x 68 159 baseline

 x x 23 63 Fix F2
 x x 23 65 Fix F2

 x x 23 33 2.6.22

 x x 21 41 Fix F3
 x x 21 25 Fix F3

 additional checks:
 - average irq/preempt off improved
 - maximum irq/preempt off improved
 - cyclictest results not negatively impacted

 Fix Result (F2, F3)

 Fix Result (F2, F3)

 Fix Conclusion (F2, F3)

Reducing processor migration may decrease
task wake up time significantly.

 Fix Conclusion (F2, F3)

Reducing processor migration may decrease
task wake up time significantly.

But test is a rather simplistic case

 real-time task processing time << task switch time
 real-time task processing time << task migration time

 Fix Conclusion (F2, F3)

Reducing processor migration may decrease
task wake up time significantly.

But test is a rather simplistic case

 real-time task processing time << task switch time
 real-time task processing time << task migration time

Will these improvements apply to a more
complex real-time application?

Strategy: Trust Nothing,
 Blame Everything

Strategy: Trust Nothing,
 Blame Everything

A minor distraction from both the debug / fix
process and the flow of this presentation. But
this is about the point in the debug process
that I got around to tracking an irritant in the data.

Strategy: Trust Nothing,
 Blame Everything

A minor distraction from both the debug / fix
process and the flow of this presentation. But
this is about the point in the debug process
that I got around to tracking an irritant in the data.

Real life is never the clean, straight line process
that this talk pretends to show.

Data from step n + X is often hard to compare to
data from step n.

Strategy: Trust Nothing,
 Blame Everything

A single very large maximum task wake up time
was occasionally appearing during the early
stages of the testing and improvements described
in the previous slides.

 The data for the tables of results and graphs shown on
 previous slides was recreated after resolving the
 cause of the large maximum.

Strategy: Trust Nothing,
 Blame Everything

A single very large maximum task wake up time
was occasionally appearing during the early
stages of the testing and improvements described
in the previous slides.

CAUSE: a printk() in the consumer task, located
 before the test loop

Tactics

 #1 Compare kernel config options

Still have not applied tactic #1 to the
task wake up time issue.

 Fix (F4)

1) Kernel configuration changes
 CONFIG_PREEMPT_RCU_BOOST=n
 CONFIG_NO_HZ=n

2) Disable ARM option to enable interrupts in
 context_switch().
 CONFIG_DISABLE_WANT_INTERRUPTS_ON_CTXSW=y

 (Interrupts are enabled then disabled in context_switch() if
 __ARCH_WANT_INTERRUPTS_ON_CTXSW is defined. This is similar to, but
 somewhat different than, the experiment of enabling irqs on the return from interrupts
 path described in “Adventures in Real-Time Performance Tuning, Part 1”.)

 Fix (F4)

1) Kernel configuration changes
 CONFIG_PREEMPT_RCU_BOOST=n
 CONFIG_NO_HZ=n

2) Disable ARM option to enable interrupts in
 context_switch().
 CONFIG_DISABLE_WANT_INTERRUPTS_ON_CTXSW

 (Interrupts are enabled then disabled in context_switch() if
 __ARCH_WANT_INTERRUPTS_ON_CTXSW is defined. This is similar to, but
 somewhat different than, the experiment of enabling irqs on the return from interrupts
 path described in “Adventures in Real-Time Performance Tuning, Part 1”.)

Goal: verify that the config changes to reduce irq off
 time do not increase task wake up time

 Fix Result (F4)
Average task wake up time,
10000 iteration test run 8 times per configuration

21 - 22 usec CONFIG_DISABLE_WANT_INTERRUPTS_ON_CTXSW=y
 CONFIG_PREEMPT_RCU_BOOST=n
 CONFIG_NO_HZ=n
20 - 22 usec CONFIG_DISABLE_WANT_INTERRUPTS_ON_CTXSW=y
21 - 24 usec 4 migration fixes, after merging unrelated patches
 22 usec 4 migration fixes, before merging unrelated patches
23 - 24 usec 2 migration fixes
40 - 43 usec pinned to same processor
32 - 53 usec pinned to different processor
 73 usec no processor affinity

Not a large impact on average task wakeup time,
but a large improvement in irq/preempt off metric

A Bigger Picture Of Metrics
(but still a subset of what I track)

AKA keeping the big picture in view

 -------- cyclictest --------- -------- irq off ------------ -------- preempt off ------- -------- irq/preempt off ---
test ----maximum--- ----average--- ----maximum--- ----average--- ----maximum--- ----average--- ----maximum--- ----average---
num min avg max min avg max min avg max min avg max min avg max min avg max min avg max min avg max
----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
00050 53 110 409 49 85 281 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 fix 3
00051 56 160 401 49 86 272 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 fix 3

00052 147 330 618 90 195 460 3 21 499 3 17 356 3 16 364 3 12 326 6 23 543 6 20 352 fix 3
00053 102 306 793 87 189 479 3 19 488 3 17 329 3 15 395 3 12 296 6 23 443 6 20 357 fix 3

00054 49 164 364 46 90 247 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 fix 3 + _CTXSW=y
00055 53 185 391 47 95 268 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 fix 3 + _CTXSW=y

00056 131 289 591 86 179 429 3 24 374 3 20 297 3 14 325 3 11 269 6 21 539 6 19 345 fix 3 + _CTXSW=y
00057 96 258 687 80 172 463 3 23 320 3 21 305 3 14 295 3 11 240 6 22 336 6 19 290 fix 3 + _CTXSW=y

00058 88 188 335 47 78 241 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 fix 4
00059 49 111 314 45 72 240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 fix 4

00060 96 229 527 83 157 394 3 20 348 3 18 321 3 14 293 2 11 250 6 21 419 6 18 327 fix 4
00061 115 242 791 84 165 459 3 20 444 3 18 327 3 14 345 1 11 265 6 21 413 6 18 344 fix 4
00062 110 268 707 84 166 443 3 21 383 3 18 334 3 14 357 2 11 284 6 22 361 6 18 327 fix 4

 What Does It All Mean?

 What Does It All Mean?

Keep real time application performance in sight
while tuning individual components

 What Does It All Mean?

Keep real time application performance in sight
while tuning individual components

Watch a vast range of metrics and behaviors
for each change

 What Does It All Mean?

Keep real time application performance in sight
while tuning individual components

Watch a vast range of metrics and behaviors
for each change

Look at a large number of statistics for the
metrics (for example, minimum, maximum,
average, standard deviation)

 What Does It All Mean?

Keep real time application performance in sight
while tuning individual components

Watch a vast range of metrics and behaviors
for each change

Look at a large number of statistics for the
metrics (for example, minimum, maximum,
average, standard deviation)

Look at graphic representations of metrics

 What Does It All Mean?

What is in the scope of a tuning effort?

 What Does It All Mean?

What is in the scope of a tuning effort?

EVERYTHING, just like in any debugging effort!

 What Does It All Mean?

What is in the scope of a tuning effort?

EVERYTHING, just like in any debugging effort!

 - Instrumentation
 - Tests
 - Kernel
 - Drivers
 - Real Time Applications
 - Other Applications
 - External Influences

 What Does It All Mean?

Frank's Law of Performance Tools

 What Does It All Mean?

Frank's Law of Performance Tools

The performance metric that you need to answer
the current question

 - is not available from any existing source or tool

 What Does It All Mean?

Frank's Law of Performance Tools

The performance metric that you need to answer
the current question

 - is not available from any existing source or tool

 - or is not presented in a meaningful manner

 What Does It All Mean?

Frank's Law of Performance Tools

The performance metric that you need to answer
the current question

 - is not available from any existing source or tool

 - or is not presented in a meaningful manner

You will need to write a new tool or leverage an
existing tool.

 Resources

Rtiwiki
 http://rt.wiki.kernel.org/index.php/Main_Page

rt-user-list
 http://dir.gmane.org/gmane.linux.rt.user

eLinux.org
 http://elinux.org/Real_Time

cyclictest
 http://git.kernel.org/?p=linux/kernel/git/tglx/rt-tests.git;a=summary

http://git.kernel.org/?p=linux/kernel/git/tglx/rt-tests.git;a=summary

 Resources

ftrace
 http://people.redhat.com/srostedt/ftrace-tutorial.odp
 kernel source: Documentation/ftrace.txt

hackbench
 http://devresources.linux-foundation.org/craiger/hackbench/

LatencyTOP
 http://www.latencytop.org

“Stress actions - things that will kill realtime performance”
and information about test programs and testing
 http://elinux.org/Realtime_Testing_Best_Practices

http://people.redhat.com/srostedt/ftrace-tutorial.odp
http://www.latencytop.org/

 Resources

A realtime preemption overview
 http://lwn.net/Articles/146861

What's in the realtime tree
 http://lwn.net/Articles/252716

Ninth Real-Time Linux Workshop 2007
 http://lwn.net/Articles/260118
 http://linuxdevices.com/articles/AT4991083271.html

