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The Setup

● Customer application crashed after a few hours

● The clincher: new issue from existing code
● Run without issue on older, singlemode RTOS
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Initial Investigation

● Configured to provide a core file on crash
● Initial investigation fingered a SIGABRT

● Normally used for assert() and critical errors
● Coming from glibc, __pthread_mutex_lock_full()

● ulimit -c ${blocks}
● May need to edit /etc/security/limits.conf
● Can set in the /etc/profile(.d/*)
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Digging in Further

● Reproducing the issue with console enabled
● “pthread_mutex_lock.c:309: Assertion `...' failed.”
● Points me to a file and line number
● Assertion is checking the return from a futex syscall

– Checking for a reported deadlock on certain lock types
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Pthread_mutexes and futexes and 
contested locks (oh my!)

● pthread_mutex configured to be priority-inheriting
● Uncontested lock stays in US (cmpxchg)
● Uses the kernel sys_futux call if contested

● Creates a futex queue of tasks to wake when the holder 
releases the lock (FUTEX_WAIT)

● Sits atop rtmutex code within the kernel
● On release, previous holder notes that there are waiters, 

wakes one or more (FUTEX_WAKE)
● The underlying rt_mutex subsystem provides some nice 

features (deadlock detection, e.g.)

● Time to don the waders, we're going in...
The Ephemeral Smoking Gun
Brad Mouring



 6

rt_mutexes: Enough knowledge to 
be dangerous

● Largely from (and apologies for hacking-up) 
documentation from rostedt

● rt_mutexes designed in -rt (duh), upstreamed
● Implement PI to solve PI (acronyms rock)
● rt_mutex has task who owns, tasks that block

● (and the locks the blocked tasks own)
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rt_mutexes: Enough knowledge to 
be dangerous

● These relationships allow for PI
● Also handy for checking for deadlocks
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rt_mutexes: Enough knowledge to 
be dangerous

● These relationships allow for PI
● Also handy for checking for deadlocks
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How to debug, and where?

● EDEADLK returned in a few locations, including 
a few in futex/mutex/rtmutex code

● Place a kgdb_breakpoint at these sites
● Build a kernel with kgdb enabled
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kgdb: When printk's don't
cut the mustard

● Configure the kernel
● CONFIG_DEBUG_INFO
● CONFIG_KGDB
● CONFIG_KGDB_method_to_connect
● CONFIG_KGDB_KDB (optional)
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Connecting to a kgdb machine

● You have a few options
● Serial port (null-modem connection)
● Over Ethernet (kgdboe) with out-of-tree source¹

● Set module params on boot, on module load, or 
thereafter through sysfs
● Port and baud

¹http://sysprogs.com/VisualKernel/kgdboe/
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Quick Test

● Connect via gdb host machine
● Connected to the target being tested
● Debug vmlinux bin + source
● gdb that understands the arch of the test machine

● Write a 'g' in /proc/sysrq-trigger to break
● Quick demo
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Tips for using kgdb/gdb

● Search for (or write) useful user-defined cmds
● Sequences you use frequently

● Pop cmds and settings in your ~/.gdbinit
● Graphical frontends are available if you must
● Excellent resources online
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kgdb leads to a dead end

● EDEADLK came from rtmutex priority chain 
walking code (rt_mutex_adjust_prio_chain)
● The priochain walking code seemed to think that we 

had a loop in the chain
● Walking the chain manually in gdb from the original 

mutex, we reach a mutex who has no owner
● We somehow were supposed to loop back around 

to the original mutex, as that's the current state of 
the structures and pointers within the function

… and that's not necessarily a bad thing.
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State of the Priority Chain
at EDEADLK
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A few clues

● Mutex M2 recently had an owner but doesn't 
currently

● There are two tasks (A, B) blocked on mutex 
M1

● The checks that occur while walking the chain 
don't see anything odd and complain until a 
deadlock is detected

The Ephemeral Smoking Gun
Brad Mouring



 17

Re-ftrace-ing my steps

● A picture of what's going on leading up to the 
detected deadlock may shed some light into 
what's going on

● Ftrace and a set of tracers were already 
enabled on our kernel (used for other purposes)

● Insert some strategic trace_printk()s
● Add SIGABRT handler to app to stop tracing
● Reproduce the issue, use trace-cmd extract
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kernelshark comes into the picture
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kernelshark comes into the picture

● Pulling the dump into kernelshark to take a 
closer look, we notice a few interesting points
● Task 'B' (received EDEADLK) scheduled out 

between attempting to take mutex and reporting 
EDEADLK

● Quite a bit of mutex activity while B is out

● We begin to form a narrative on what is 
happening
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Re-ftrace-ing my steps
A

B

C M2

M1 orig_locktask

B blocks on M1
M1 is held by C
C is blocked on M2
M2 is held by A
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Re-ftrace-ing my steps
A

B

C M2

M1

task

B blocks on M1
M1 is held by C
C is blocked on M2
M2 is held by A
B begins walking the prio chain

orig_lock
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Re-ftrace-ing my steps
A

B

C M2

M1

B blocks on M1
M1 is held by C
C is blocked on M2
M2 is held by A
B begins walking the prio chain...PREEMPT!
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Re-ftrace-ing my steps
A

B

C M2

M1
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task
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Re-ftrace-ing my steps
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Re-ftrace-ing my steps

B
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M1

D is scheduled in, blocks on M3 (creates rtmutex)
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Re-ftrace-ing my steps

B is scheduled back in, continues its walk of the prio chain
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Putting it all together

● The situation we find the prio chain in just so 
happens to pass all of the checks put in place 
to verify that we still have a sane prio chain and 
that the chain hasn't changed to the point 
where we stop

● The mutex currently investigated is the same as 
the original mutex that blocked B (M1), this is 
seen as a deadlock and reported thusly
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Takin' it to the Streets

● Came to the linux-rt-users mailing list
● Had findings writeup, preliminary patch
● tglx saw the issue at hand, didn't like my patch, 

proposed his own fix
● Moral: issue got fixed, learned about working 

with the mailing lists
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Conclusions

●  There are some great tools (and online 
documentation) to solve kernel issues

● I've only covered two, there are many more
● Lockdep checking
● RCU debugging
● kdump kernel(s)
● KDB
● Vendor tools
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Questions? 
Comments?

Thanks!
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