
The Ephemeral
Smoking Gun

Using ftrace and kgdb to resolve
a pthread “deadlock”

Brad Mouring
LabVIEW Real-Time
National Instruments

 2

The Setup

● Customer application crashed after a few hours

● The clincher: new issue from existing code
● Run without issue on older, singlemode RTOS

The Ephemeral Smoking Gun
Brad Mouring

 3

Initial Investigation

● Configured to provide a core file on crash
● Initial investigation fingered a SIGABRT

● Normally used for assert() and critical errors
● Coming from glibc, __pthread_mutex_lock_full()

● ulimit -c ${blocks}
● May need to edit /etc/security/limits.conf
● Can set in the /etc/profile(.d/*)

The Ephemeral Smoking Gun
Brad Mouring

 4

Digging in Further

● Reproducing the issue with console enabled
● “pthread_mutex_lock.c:309: Assertion `...' failed.”
● Points me to a file and line number
● Assertion is checking the return from a futex syscall

– Checking for a reported deadlock on certain lock types

The Ephemeral Smoking Gun
Brad Mouring

 5

Pthread_mutexes and futexes and
contested locks (oh my!)

● pthread_mutex configured to be priority-inheriting
● Uncontested lock stays in US (cmpxchg)
● Uses the kernel sys_futux call if contested

● Creates a futex queue of tasks to wake when the holder
releases the lock (FUTEX_WAIT)

● Sits atop rtmutex code within the kernel
● On release, previous holder notes that there are waiters,

wakes one or more (FUTEX_WAKE)
● The underlying rt_mutex subsystem provides some nice

features (deadlock detection, e.g.)

● Time to don the waders, we're going in...
The Ephemeral Smoking Gun
Brad Mouring

 6

rt_mutexes: Enough knowledge to
be dangerous

● Largely from (and apologies for hacking-up)
documentation from rostedt

● rt_mutexes designed in -rt (duh), upstreamed
● Implement PI to solve PI (acronyms rock)
● rt_mutex has task who owns, tasks that block

● (and the locks the blocked tasks own)

The Ephemeral Smoking Gun
Brad Mouring

 7The Ephemeral Smoking Gun
Brad Mouring

rt_mutexes: Enough knowledge to
be dangerous

● These relationships allow for PI
● Also handy for checking for deadlocks

task

waiter

task

waiter

task mutex

waiter

task mutex

mutex

mutex

 8

rt_mutexes: Enough knowledge to
be dangerous

● These relationships allow for PI
● Also handy for checking for deadlocks

task

waiter

task mutex

waiter

mutex

The Ephemeral Smoking Gun
Brad Mouring

 9

How to debug, and where?

● EDEADLK returned in a few locations, including
a few in futex/mutex/rtmutex code

● Place a kgdb_breakpoint at these sites
● Build a kernel with kgdb enabled

The Ephemeral Smoking Gun
Brad Mouring

 10

kgdb: When printk's don't
cut the mustard

● Configure the kernel
● CONFIG_DEBUG_INFO
● CONFIG_KGDB
● CONFIG_KGDB_method_to_connect
● CONFIG_KGDB_KDB (optional)

The Ephemeral Smoking Gun
Brad Mouring

 11

Connecting to a kgdb machine

● You have a few options
● Serial port (null-modem connection)
● Over Ethernet (kgdboe) with out-of-tree source¹

● Set module params on boot, on module load, or
thereafter through sysfs
● Port and baud

¹http://sysprogs.com/VisualKernel/kgdboe/

The Ephemeral Smoking Gun
Brad Mouring

 12

Quick Test

● Connect via gdb host machine
● Connected to the target being tested
● Debug vmlinux bin + source
● gdb that understands the arch of the test machine

● Write a 'g' in /proc/sysrq-trigger to break
● Quick demo

The Ephemeral Smoking Gun
Brad Mouring

 13

Tips for using kgdb/gdb

● Search for (or write) useful user-defined cmds
● Sequences you use frequently

● Pop cmds and settings in your ~/.gdbinit
● Graphical frontends are available if you must
● Excellent resources online

The Ephemeral Smoking Gun
Brad Mouring

 14

kgdb leads to a dead end

● EDEADLK came from rtmutex priority chain
walking code (rt_mutex_adjust_prio_chain)
● The priochain walking code seemed to think that we

had a loop in the chain
● Walking the chain manually in gdb from the original

mutex, we reach a mutex who has no owner
● We somehow were supposed to loop back around

to the original mutex, as that's the current state of
the structures and pointers within the function

… and that's not necessarily a bad thing.

The Ephemeral Smoking Gun
Brad Mouring

 15

State of the Priority Chain
at EDEADLK

C M2C M2

A M1

B

D

C M2

M3

M1orig_waiter

task

orig_lock

The Ephemeral Smoking Gun
Brad Mouring

 16

A few clues

● Mutex M2 recently had an owner but doesn't
currently

● There are two tasks (A, B) blocked on mutex
M1

● The checks that occur while walking the chain
don't see anything odd and complain until a
deadlock is detected

The Ephemeral Smoking Gun
Brad Mouring

 17

Re-ftrace-ing my steps

● A picture of what's going on leading up to the
detected deadlock may shed some light into
what's going on

● Ftrace and a set of tracers were already
enabled on our kernel (used for other purposes)

● Insert some strategic trace_printk()s
● Add SIGABRT handler to app to stop tracing
● Reproduce the issue, use trace-cmd extract

The Ephemeral Smoking Gun
Brad Mouring

 18

kernelshark comes into the picture

 19

kernelshark comes into the picture

● Pulling the dump into kernelshark to take a
closer look, we notice a few interesting points
● Task 'B' (received EDEADLK) scheduled out

between attempting to take mutex and reporting
EDEADLK

● Quite a bit of mutex activity while B is out

● We begin to form a narrative on what is
happening

The Ephemeral Smoking Gun
Brad Mouring

 20

Re-ftrace-ing my steps
A

B

C M2

M1 orig_locktask

B blocks on M1
M1 is held by C
C is blocked on M2
M2 is held by A

The Ephemeral Smoking Gun
Brad Mouring

 21

Re-ftrace-ing my steps
A

B

C M2

M1

task

B blocks on M1
M1 is held by C
C is blocked on M2
M2 is held by A
B begins walking the prio chain

orig_lock

The Ephemeral Smoking Gun
Brad Mouring

 22

Re-ftrace-ing my steps
A

B

C M2

M1

B blocks on M1
M1 is held by C
C is blocked on M2
M2 is held by A
B begins walking the prio chain...PREEMPT!

B's ctxtorig_lock

task

The Ephemeral Smoking Gun
Brad Mouring

 23

Re-ftrace-ing my steps
A

B

C M2

M1

A is scheduled in, releases M2

orig_lock B's ctxtorig_lock

task

The Ephemeral Smoking Gun
Brad Mouring

 24

Re-ftrace-ing my steps

B

C M2

M1

A is scheduled in, releases M2
A takes (uncontended) M3 in userspace
A blocks on M1

C M1A

orig_lock

task

The Ephemeral Smoking Gun
Brad Mouring

 25

Re-ftrace-ing my steps

B

C M2

M1

D is scheduled in, blocks on M3 (creates rtmutex)

M1A

D M3

orig_lock

task

The Ephemeral Smoking Gun
Brad Mouring

 26

Re-ftrace-ing my steps

B is scheduled back in, continues its walk of the prio chain

The Ephemeral Smoking Gun
Brad Mouring

B

C M2

M1

M1A

D M3

orig_lock

task

 27

Putting it all together

● The situation we find the prio chain in just so
happens to pass all of the checks put in place
to verify that we still have a sane prio chain and
that the chain hasn't changed to the point
where we stop

● The mutex currently investigated is the same as
the original mutex that blocked B (M1), this is
seen as a deadlock and reported thusly

The Ephemeral Smoking Gun
Brad Mouring

 28

Takin' it to the Streets

● Came to the linux-rt-users mailing list
● Had findings writeup, preliminary patch
● tglx saw the issue at hand, didn't like my patch,

proposed his own fix
● Moral: issue got fixed, learned about working

with the mailing lists

The Ephemeral Smoking Gun
Brad Mouring

 29

Conclusions

● There are some great tools (and online
documentation) to solve kernel issues

● I've only covered two, there are many more
● Lockdep checking
● RCU debugging
● kdump kernel(s)
● KDB
● Vendor tools

The Ephemeral Smoking Gun
Brad Mouring

 30

Questions?
Comments?

Thanks!

The Ephemeral Smoking Gun
Brad Mouring

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

