
ANDROID
Kit Kat
INTERNALS
Benjamin Zores
Android Builder Summit 2014
30th April 2014 - San Jose, USA

These slides are made available o you under Creative Commons Share-Alike 3.0 license.
The full terms of this license are available here:
https://creativecommons.org/licenses/by-sa/3.0/

Attribution requirements and misc., PLEASE READ:
- This slide must remain as-is in this specific location (slide #2), 

everything else you are free to change; including the logo ;-)
- Use of figures in other documents must feature the below “Originals at” URL  

immediately under that figure and the below copyright notice where appropriate.
- You are FORBIDDEN from using the default slide #3 as-is or any of its contents.

(C) Copyright 2014 - Opersys inc.
These slides are created by: Benjamin Zores
Originals at: http://www.opersys.com/community/docs

https://creativecommons.org/licenses/by-sa/3.0/
http://www.opersys.com/community/docs

Benjamin 
Zores

benjaminzores
@gxben
#Benjamin Zores

http://fr.linkedin.com/in/benjaminzores/
https://twitter.com/gxben
https://plus.google.com/u/0/+BenjaminZores

 Embedded Android  
 Karim Yaghmour, O’Reilly - Mar 2013

 Android 4: Fondements Internes 
 Benjamin Zores, Ed. Diamond - Q3’2014

PREVIOUSLY ON

Ice Cream Sandwich 
Device Porting Walkthrough
ABS 2012 - Focus on ICS 4.0 to 4.0.4
http://goo.gl/1LD92r

Jelly Bean 
Device Porting Walkthrough
ABS 2013 - Focus on JB 4.1
http://goo.gl/l2oSZd

http://goo.gl/1LD92r
http://goo.gl/l2oSZd

NAME VERSION SDK RELEASE
DATE

KERNEL
VERSION

SDK API NDK API
N/A 1.0 September 2008 2.6.25 1 N/A

PETIT FOUR 1.1 February 2009 2.6.25 2 N/A
CUPCAKE 1.5 April 2009 2.6.27 3 1

DONUT 1.6 September 2009 2.6.27 4 2

ECLAIR
2.0 October 2009 2.6.29 5 2

2.0.1 December 2009 2.6.29 6 2
2.1 January 2010 2.6.29 7 3

FROYO 2.2 May 2010 2.6.32 8 4

GINGERBREAD 2.3 - 2.3.2 November 2010 2.6.35 9 5
2.3.3 - 2.3.7 February 2011 2.6.35 10 5

HONEYCOMB
3.0 February 2011 2.6.36 11 6

3.1.x May 2011 2.6.36 12 6
3.2.x June 2011 2.6.36 13 6

ICE CREAM
SANDWICH

4.0 - 4.0.2 October 2011 3.0.1 14 7
4.0.3 - 4.0.4 December 2011 3.0.1 15 7

JELLY BEAN
4.1.1 - 4.1.2 June 2012 3.0.31 16 8

4.2 November 2012 3.0.31 17 8
4.3 July 2013 3.0.31 18 9

KIT KAT 4.4 October 2013 3.4.0 19 9

Releases History

Today Focus:
Jelly Bean 4.1 to Kit Kat 4.4

NAME PROJECTS SIZE

ICE CREAM
SANDWICH

(4.0)
230 5.5 GB

JELLY BEAN
(4.1)

361
(+57%)

8 GB
(+46%)

KIT KAT
(4.4)

407
(+13%)

10 GB
(+25%)

AOSP Source Tree Changes

I’m not an app developer guy (really) ! 
So instead, we’ll focus on …

Modern Device Internals

Android Software Architecture

Project

Butter

Android GFX Architecture
• Triple Buffering

• Better coordination and sync. of animations 
between CPU, GPU and display.

!
• Multi-Threaded GFX Rendering Engine

• GPU or multi-cores CPU
!

• OpenGL ES 3.0
• For NDK and Java apps
• Optimized HW 2D Rendering
• ETC2/EAC Texture Compression support.

Vertical Synchronization
• Events are synchronized against display refresh cycles.
• Avoid tearing effect
• Display refresh rate updated from 30 to 60 fps.
• A 16ms timeslot is allocated to each frame to be displayed.
• Apps draw frame at start of VSYNC period.
• SurfaceFlinger starts composition at the start  

of next VSYNC period.
!
!
• HW Composer HAL to be updated:
	 void (*vsync)(const struct hwc_procs* procs, 
	 	 	 	 int disp, int64_t timestamp);

• Max timestamp tolerance between caller and callee: 1ms

to be called at each
VSYNC event
reception.

Vertical Synchronization
• Gralloc HAL:

• Composition buffers to be acquired/released 
in sync with VSYNC events.

• Producers and consumers to notify 
when they're done with a buffer.

!
• Explicit sync through:

• kernel driver, used to sync HW with HW composer
• HAL v1.1: sync mechanisms through set() and prepare()
• libsync for user/kernel communication

• system/core/include/sync/sync.h
• system/core/libsync

Better Touch Reactivity
• Touch events are HW synchronised 

with VSYNC events.
!
• Predict upcoming actions on touchscreen 

based on finger position: 

• Where it's gonna be at next VSYNC period. 

• Instant CPU boost at wake-up, for better latency.
!
!

Multiple Displays Support
• True Dual-Head Support (ICS was limited to mirror/clone)
!
• HWComposer HAL v1.1:

• Display detection routine:
	 	 void (*hotplug)(const struct hwc_procs* procs, 
	 	 	 	 	 int disp, int connected);
!

• Check display capabilities:
	 	 int (*getDisplayAttributes)(struct hwc_composer_device_1* dev, 
	 	 int disp, uint32_t config, const uint32_t* attributes, int32_t* values);

• HWC_DISPLAY_VSYNC_PERIOD : VSYNC period (ns)
• HWC_DISPLAY_{WIDTH,HEIGHT}: screen resolution (pixels)
• HWC_DISPLAY_DPI_{X,Y}: screen density (pixels / 1000 inches)

!
• Blanking:

	 	 int (*blank)(struct hwc_composer_device_1* dev, int disp, int blank);
!
• New Display Manager Service: allow apps to talk to HAL and displays.

Project

Svelte

"We were kind of joking that, when I started, the first
thing that I was working on was Project Butter to make

the system smoother. The thing is, butter puts on
weight. So then I did Project Svelte to lose weight. So

now my contribution to Android is basically zero.”
 

Dave Burke, head of engineering for Android at Google.

Goals
• Reduce system memory footprint to allow 

running on devices with 512 MB RAM.
!

• Reduce the footprint (memory usage) of the apps 
that run on a Google Experience (Nexus) device.
!

• Fix how apps react and crash during 
bad memory situations.
!

• Provide better measurement and instrumentation 
of how apps are running in Android so developers 
can see how memory-conscious their apps are.

Kernel Same-Page Merging (KSM)

• Introduced in Linux 2.6.32
• Allow processes to share memory pages.
• Kernel scan for identical pages (marked as

MADV_MERGEABLE) and merges through COW
operations.

• Great for memory but not for performances
• Consumes CPU, hence battery too !

!
• Enable KSM through init.rc:
 	 	 write /sys/kernel/mm/ksm/pages_to_scan 100
 	 	 write /sys/kernel/mm/ksm/sleep_millisecs 500
 	 	 write /sys/kernel/mm/ksm/run 1

Swap to ZRAM
• Uses compressed memory as SWAP.
• Allow more processes to be launched.
• Great for memory but not for performances

• Consumes CPU, hence battery too !
!

• Enable Swap-to-ZRAM through fstab:
	 /dev/block/zram0 none swap defaults 
	 zramsize=<size in bytes>,swapprio=<swap partition priority>
!
• and init.rc:
	 swapon_all /fstab.X
!
• ActivityManager makes low-priority threads 

more elligible to swap.

LowRamDevice
• New ActivityManager.isLowRamDevice() API.

!
• Allow apps to know if device has 512 MB RAM (or less):

• Allow them to disable some features in that case.
• System also kills heavy idle apps 

and services earlier.
• System starts services sequentially.

!
• Device must declared themselves in BoardConfig.mk:
	 PRODUCT_PROPERTY_OVERRIDES += 
	 	 ro.config.low_ram=true
!

System Memory Footprint
• Shrink of system_server and SystemUI provides a few MB

here and there.
• DEX caches preload inside Dalvik VM.
• Java framework replaces ArrayMap/ArraySet 

by HashMap/HashSet for better efficiency.
• Reduction of fonts management cache.
!
• Option to disable Dalvik JIT: saves 200 kB memory per app

• Overall system gain of 3 to 6 MB RAM.
• Done through BoardConfig.mk:

	 	 PRODUCT_PROPERTY_OVERRIDES += 
	 	 	 dalvik.vm.jit.codecachesize=0
!

MemTrack
• New HAL plugin to check memory usage.

• See hardware/libhardware/include/hardware/memtrack.h
!

• Mostly used to track GFX surfaces allocation.
• Must interface with HW (e.g. GPU).
• A texture is allocated in GPU memory 

(even if dedicated system memory).
• Invisible from process address space.

!
• GFX memory can be categorized:

• Camera, GL, Graphics, Multimedia, Other.
!
• Stats can be retrieved through:
	 	 getMemory(<pid>, MEMTRACK_TYPE_GL)

ProcStats

• Allows developers to track their 
applications memory consumption.

• Provides execution time metrics for apps and
background services.

• Provides continuous metrics, not instant snapshot.
• Stats are automatically retrieved by system

• No special compilation option is required.
!
• Started through:
	 	 adb shell dumpsys procstats –details

!

Now let’s consider an app with 2 services 
(FirstService and SecondService)

ProcStats
* com.test.procstats / u0a51:
 * com.test.procstats / u0a51:
 TOTAL: 100% (4.4MB-5.0MB-6.1MB/3.0MB-3.1MB-3.1MB over 3)
 Top: 1.7% (6.1MB-6.1MB-6.1MB/3.1MB-3.1MB-3.1MB over 1)
 Service: 90% (4.4MB-4.4MB-4.4MB/3.0MB-3.0MB-3.0MB over 2)
 Service Rs: 8.1%
 * com.test.procstats.FirstService:
 Process: com.test.procstats
 Running count 2 / time 0.23%
 Started count 1 / time 0.23%
 Executing count 2 / time 0.01%
 * com.test.procstats.SecondService:
 Process: com.test.procstats
 Running count 1 / time 92%
 Started count 1 / time 92%
 Executing count 1 / time 0.01%
!

FirstService consumed 0.23%
of app's global execution time.

SecondService consumed 92% of
app's global execution time.

* com.test.procstats / u0a51:
 Process com.test.procstats (3 entries):
 Screen On / Norm / Top : +30s259ms
* com.test.procstats / u0a51:
 Process com.test.procstats (3 entries):
 Screen On / Norm / Top : +30s259ms
 Service : +26m35s118ms (running)
 Service Rs: +2m23s130ms
 TOTAL : +29m28s507ms
 # [...]
 mActive=true
 mNumActiveServices=1 mNumStartedServices=1
 Service com.test.procstats.FirstService:
 Process: com.test.procstats
 Running op count 2:
 Screen On / Norm / +4s116ms
 TOTAL: +4s116ms
 # […]
 Service com.test.procstats.SecondService:
 Process: com.test.procstats
 Running op count 1:
 Screen On / Norm / +27m4s66ms (running)
 TOTAL: +27m4s66ms

Let's check for 
real execution times:
adb shell dumpsys -a

mNumActiveServices=1  
=> Service is still running ! 
Guess why battery is running out ?

SecondService 
ran for 27 min.

FirstService 
ran for 4s

ProcStats

Android RunTime

- ART -

Android RunTime
• New experimental VM.

• See libcore/libart.
!

• Aims at superseding 
Dalvik anytime soon.
!

• Though not yet 
100% compatible with
Dalvik 
(may prevent application
from running correctly).
!

!

Can be enabled through
Settings > 
Developer Options
!

Android RunTime
• ART is supposed to be more efficient than Dalvik.

!
• Today devices have more memory 

and better CPUs than once Dalvik was designed.
!

• Can be added/enabled at build in 
build/target/product/core_minimal.mk:
!

	 	 PRODUCT_RUNTIMES := 
	 	 	 runtime_libdvm_default
	 	 PRODUCT_RUNTIMES += runtime_libart

Android RunTime
• Replaces JIT by AOT ("Ahead-of-Time") approach.

• Native code is compiled at app's installation time.
• Apps execute faster as code is already compiled.
• Prevents lags as CPU is not compiling code in

background anymore.
• But consumes more storage space (not really an issue) 

and a bit more memory.
• CPU is used less often and should save battery life 

(a bit).
!

• Developers may hate that apps take more time 
to install on a daily basis.

!
• Early benchmarks show a 10-20% performances bump.

Network

Enhancements

Wireless Display
• JB 4.3 introduced Miracast support.

• Transmits audio/video over HDMI.
!

• Requirements
• HW radio chip must be P2P compliant.
• HW radio chip must support multiple 

connections at a time.
• AudioFlinger's policy must provide r_submix 

remote audio mixing capability.
• Device must provide HDCP keys as to stream DRM

protected content.
!

• Can be enabled through 
frameworks/base/core/res/res/values/config.xml:

	 	 <bool name="config_enableWifiDisplay">true</bool>

Bluetooth
• Provides BTLE (Bluetooth Low-Energy) / Bluetooth Smart Ready support.
!

• JB 4.2 replaced BlueZ by Broadcom's BlueDroid (external/bluetooth/bluedroid)
• Got rid of GPL dependencies (BlueZ and D-BUS).
• Reference implementation can be customized by every vendor.
!

• Now features a HAL (like other sub-systems).
• See hardware/libhardware/include/hardware/bluetooth.h
• Vendor-specific HCI communication can be done 

through libbt-vendor plugin.
!

• BT profiles are implemented through HAL, BlueDroid and called by apps (JNI).
• See hardware/libhardware/include/hardware/bt_{profile}.h
• See packages/apps/Bluetooth/jni/com_android_bluetooth_{profile}.cpp

!
• Now supports the following profiles: A2DP, AVRCP, GATT, 

HDP, HFP, HID and PAN.

Bluetooth

Bluetooth Embedded System (BTE) implements system layer.
Bluetooth Application Layer (BTA) talks with application framework.

Near Field Communication (NFC)

• HAL Update:
• From NXP's PN544-centric HCI HAL
• To Broadcom's more generic NFC-NCI HAL.
• Both continue to exist while new

developments should use NFC-NCI one.
• See hardware/libhardware/include/

hardware/nfc.h
!

• New Broadcom's external/libnfc-nci 
NFC Controller Interface user stack.

Audio

Subsystem

New Features

• Multi-channels (e.g. 5.1 surround) support.
!

• USB devices output.
!

• Audio streams pre-processing FX.
!

• Remote audio devices streaming.
!

• Low Latency enhancements through OpenSL ES APIs.

Supported Devices
• Audio HAL v2.0 now supports multiples 

input/output types:
!
• primary: usually SoC's internal sound card.
• a2dp: optional Bluetooth device

• e.g. headset or speakers.
• usb: optional USB external device

• e.g. DAC or audio dock.
• r_submix: optional remote interface

• e.g. HDMI TV over Miracast.
• codec_offload: optional HW audio DSP.

Audio Architecture

Audio Policy - Device Configuration
See /system/etc/audio_policy.conf:
!
!
global_configuration {
 	 	 attached_output_devices  
	 	 	 AUDIO_DEVICE_OUT_EARPIECE | 
	 	 	 AUDIO_DEVICE_OUT_SPEAKER
 	 	 default_output_device AUDIO_DEVICE_OUT_SPEAKER
 	 	 attached_input_devices 
	 	 	 AUDIO_DEVICE_IN_BUILTIN_MIC |	  
	 	 	 AUDIO_DEVICE_IN_BACK_MIC
}
!

Audio Policy - Module Configuration
See /system/etc/audio_policy.conf:
!
audio_hw_modules {
 primary {
 outputs {
 …
 [X]
	 ...
 }
 inputs {
	 	 [Y]
 }
}

 primary {
 sampling_rates 44100|48000
 channel_masks AUDIO_CHANNEL_OUT_STEREO
 formats AUDIO_FORMAT_PCM_16_BIT
 devices AUDIO_DEVICE_OUT_EARPIECE| 
	 	 AUDIO_DEVICE_OUT_SPEAKER|
AUDIO_DEVICE_ 
	 	 OUT_WIRED_HEADSET|	 

 primary {
 	 sampling_rates 8000|11025|12000|16000|22050|24000|
32000|44100|48000
 	 channel_masks AUDIO_CHANNEL_IN_MONO|
AUDIO_CHANNEL_IN_STEREO
 	 formats AUDIO_FORMAT_PCM_16_BIT
	 devices AUDIO_DEVICE_IN_BUILTIN_MIC|	 	  
	 	 	 AUDIO_DEVICE_IN_WIRED_HEADSET| 
	 	 	

Audio Policy - HDMI Configuration

• Original raw audio streaming, bypassing AudioFlinger.
!
• See /system/etc/audio_policy.conf:
!
hdmi {
 sampling_rates 44100|48000
 channel_masks dynamic
 formats AUDIO_FORMAT_PCM_16_BIT
 devices AUDIO_DEVICE_OUT_AUX_DIGITAL
 flags AUDIO_OUTPUT_FLAG_DIRECT
}
!

Automatic HW-detected
channels downsizing through
"dynamic" option.

Audio Policy - HDMI Miracast Config

 r_submix {
 outputs {
 submix {
 sampling_rates 44100|48000
 channel_masks AUDIO_CHANNEL_OUT_STEREO
 formats AUDIO_FORMAT_PCM_16_BIT
 devices AUDIO_DEVICE_OUT_REMOTE_SUBMIX
 }
 }
 inputs {
 submix {
 sampling_rates 44100|48000
 channel_masks AUDIO_CHANNEL_IN_STEREO
 formats AUDIO_FORMAT_PCM_16_BIT
 devices AUDIO_DEVICE_IN_REMOTE_SUBMIX
 }
 }

Audio Policy - USB Configuration
usb {
 outputs {
 usb_accessory {
 sampling_rates 44100
 channel_masks AUDIO_CHANNEL_OUT_STEREO
 formats AUDIO_FORMAT_PCM_16_BIT
 devices AUDIO_DEVICE_OUT_USB_ACCESSORY
 }
!
 usb_device {
 sampling_rates 44100
 channel_masks AUDIO_CHANNEL_OUT_STEREO
 formats AUDIO_FORMAT_PCM_16_BIT
 devices AUDIO_DEVICE_OUT_USB_DEVICE
 }
 }
}

Audio FX
• See /system/etc/audio_effects.conf:
!
pre_processing {
 voice_communication {
 aec {}
 ns {}
 }
 camcorder {
 agc {}
 }
}
!
• Supported inputs: mic, camcorder, voice_recognition and

voice_communication.
• Supported Effects: bassboost, virtualizer, equalizer, volume, reverb_env_aux,

reverb_env_ins, reverb_pre_aux, reverb_pre_ins, visualizer, downmix, aec, ns,
and agc.

!
Enables Accoustic Echo Cancellation
(AEC) and Noise Suppression (NS) on

!
Enables Automatic Gain Control (AGC) 
on line input.

Multimedia

Subsystem

Features Enhancements
• Low-Level NDK Media Codec Access

• Provides codec capabilities query 
(availability, HW/SW implementation ...).

• GStreamer-like pipeline design capability.
!

• Media Routing
• New MediaRouter, MediaRouteActionProvider 

and MediaRouteButton APIs.
• Allow streaming to newly-supported remote output devices.

!
• Media Muxing

• StageFright now offers API to create TS/PS streams from
ES ones.

Features Enhancements
• Media Rights Management

• Allows apps to add DRM to MPEG DASH over
HTTP.
!

• HW VP8 Encoder
• Profils/Levels can be configured through 

NDK's OpenMAX 1.1.2 APIs.
!

• Video Surface Encoding
• StageFright now offers 0-copy OpenGL ES 

video surface encoding (e.g. screen recording).

Camera New Features

• Support for Computational Photography
• High-Dynamic-Range (HDR) pictures
• Panoramic pictures
• Post-Processing FX

• Blur, noise, image enhancements …
!

!
• Requires new camera sensor's metadata 

to process raw images and deliver 
the expected final picture.
!

Image Processing Pipeline
• HAL has to implement image processing

pipeline through 
3A ISP algorithms:

• AF: Auto Focus
• AWB: Automatic White Balance
• AE: Auto Exposure 

• Consumes a RAW YV12 sensor image,
applies filters and produces picture. 

• Pipeline construction usually 
is a secret recipe

• See Qualcomm's 
SnapDragon 800 Nexus 5 
HAL v3 implementation.

Camera API vs. HAL API
ANDROID
VERSION

CAMERA_MOD
ULE VERSION

CAMERA_DEVICE
(HAL) VERSION SDK VERSION FEATURES

4.0 1.0 1.0 14 Face
Recognition

4.0.4 1.0 1.0 15 Video
Stabilisation

4.1 1.0 1.0 16 AutoFocus
Control

4.2 2.0 2.0 17
HDR,

Shutter
Sound

4.3 2.1 3.0 18 N/A

4.4 2.2 3.1 19 N/A

Camera API v2 Compatibility
• Multiple HALs
• 1.0 (camera.h)

• Introduced with ICS as a 1:1 mapping of old C++ CameraHardwareInterface.
• Perfect compatibility with SDK android.hardware.camera API v1.

• 2.0 (camera2.h)
• Introduced with JB 4.2 but considered as unstable/deprecated.
• Extends HAL v1 with manual control capabilities and Zero Shutter Lag support.
• Requires specific HW sensors.
• Perfect compatibility with SDK android.hardware.camera API v1 and v2.

• 3.0 (camera3.h)
• Introduced with JB 4.3 and considered as stable.
• Complete HAL ABI breakage but offer same hardware requirements than HAL

v2.
• Complete rework of synchronization mechanisms and actions handlers.
• Perfect compatibility with SDK android.hardware.camera API v1 and v2.

• 3.1 (camera3.h)
• Introduced with KK 4.4 and considered as stable.
• Add flush() command to cancel all queued requests (and associated buffers).
• Perfect compatibility with SDK android.hardware.camera API v1 and v2.

To be compliant with Camera Module API v2, device must
implement Camera HAL v2 or v3+.

Camera API v2
• Camera HAL v3 is stable but Camera SDK v2 IS NOT !
• Packaged as android.hardware.camera2 (a.k.a “CameraPro").

!
• Not available to application developers (yet), unless:

• You extract Kit Kat Java framework:
	 	 	 	 adb pull /system/framework/core.jar .
	 	 	 	 adb pull /system/framework/framework.jar .

• And convert DEX to JAR:
	 	 	 	 dex2jar core.jar
	 	 	 	 dex2jar framework.jar

• Then import JARs in Eclipse
	 	 	 Project > Properties > Java Path > 
	 	 	 	 Libraries > Add external JARs

External

Devices

Multi-Users Support
• Each user now has it own jailed virtual data partition

• Though large OBB files can be shared in Android/obb directory.
• SD/eMMC user data partition is FAT32 formatted

• => Try to managed user rights there ;-) 
Dynamic per-user /sdcard mount point 

• New "sdcard" daemon (see externals/core/sdcard)
• FUSE-based FAT emulator that manages files/directories permissions. 

• Enabled as a service through init.rc:
 	 	 # virtual sdcard daemon running as media_rw (1023)
 	 	 service sdcard /system/bin/sdcard /data/media 
	 	 	 /mnt/shell/emulated 1023 1023
 	 	 class late_start 

• Vold also supported user data encryption (see init.rc):
 	 	 on fs
 	 	 	 setprop ro.crypto.fuse_sdcard true

Multi-Users Support
on init
 mkdir /mnt/shell/emulated 0700 shell shell
 mkdir /storage/emulated 0555 root root
!
 export EXTERNAL_STORAGE /storage/emulated/legacy
 export EMULATED_STORAGE_SOURCE /mnt/shell/emulated
 export EMULATED_STORAGE_TARGET /storage/emulated
!
 # Support legacy paths
 symlink /storage/emulated/legacy /sdcard
 symlink /storage/emulated/legacy /mnt/sdcard
 symlink /storage/emulated/legacy /storage/sdcard0
 symlink /mnt/shell/emulated/0 /storage/emulated/legacy
!
on post-fs-data
 mkdir /data/media 0770 media_rw media_rw

Sdcard daemon mounts
EMULATED_STORAGE_TARGET

directory when user 
connects to Android

Batch Sensors
• Sensors can now deliver events in batches.

• SoC stays idle instead of being woke up at each sensor's
IRQ.

• Saves battery
!

• Events can be retrieved in 3 ways:
• Explicit request at any time.
• Postponed request at end of batch cycle.
• Postponed request through cycle's delivery frequency

control.
•

• Sensors HAL has been extended:
• See hardware/libhardware/include/hardware/sensor.h
• New batch() feature to be implemented by each driver.

Batch Sensors
• While in batch mode:

• Reported events are stored.
• Events are provided all together once an event reaches timeout.
• Each event features a timestamp allowing apps 

to process all batch-delivered events.
!

• Batch processing:
• When SoC's awake, all events are delivered at each period's end 

(when timeout has been reached). 
No event can be lost.

• When SoC's idle, sensors MUST NOT wake up the CPU. 
Events are then stored in sensor's internal FIFO buffer. 
Events can be lost. 
Only the latest available ones will be delivered to CPU at
wakeup.

Bonus Time !

http://aosp.opersys.com/changelog

http://aosp.opersys.com/changelog

That’s All Folks …

Benjamin 
Zores

benjaminzores
@gxben
#Benjamin Zores

http://fr.linkedin.com/in/benjaminzores/
https://twitter.com/gxben
https://plus.google.com/u/0/+BenjaminZores

