
Embedded Linux Conference Europe 2016

CONTINUOUS INTEGRATION AND
TESTING OF A YOCTO PROJECT BASED
AUTOMOTIVE HEAD UNIT

MARIO DOMENECH GOULART
MIKKO RAPELI

ABOUT BMW CAR IT GMBH

 Founded in 2001 as a wholly owned subsidiary of the BMW AG

 Strengthen BMW's software competence

 View vehicles as software systems

 Develop innovative software for future BMW Group vehicles

 Prototype solutions for early and reliable project decisions

 Participate in several open-source communities and research projects

Embedded Linux Conference Europe 2016 Page 2

CARS AND HEAD UNITS

Embedded Linux Conference Europe 2016 Page 3

PROJECT SETUP

 Development of a head unit for BMW cars

 A connected multimedia computer with navigation and telephony

 Several companies, physically distributed

 Hundreds of developers, on various levels

 Complex infrastructure

 Technical and political obstacles to set up technical solutions

Embedded Linux Conference Europe 2016 Page 4

CI SYSTEM REQUIREMENTS

 Provide fast feedback for developers, integrators, project organization

 Automatic multi-stage CI

 Software components change-verification in an SDK environment

 Build components

 Execute unit tests

 Software integration change-verification in the system build

 Build the full system, for all targets, all images

 Quality assurance checks after build

 Build Acceptance Testing (BAT) on real target environments (hardware, SDK)

Embedded Linux Conference Europe 2016 Page 5

QUICK OVERVIEW OF YOCTO PROJECT

 Linux-based cross-compilation framework

 Set of metadata and a task scheduler which, combined, can be used to build software

 Metadata

 Configuration files. Examples:

 Machine configuration (target platform)

 Target Linux distribution configuration

 Recipes

 Specification of tasks on how to build software (fetch, configure, compile, package etc.)

 References (e.g., git URL and commit id) the actual source code of the component it

describes

 Tasks can be implemented in Python or Shell scripts

 Maintained in separate meta repositories (e.g., git repository)

Embedded Linux Conference Europe 2016 Page 6

QUICK OVERVIEW OF YOCTO PROJECT (CONTINUED)

 Task scheduler: BitBake

 Inputs: metadata

 Outputs (typical use): packages, images, toolchains, SDKs etc.

 Sysroots

 Global staging area for builds

 Where build dependencies are installed during build

 Shared among all build tasks

 Caching

 Shared State cache (sstate cache)

 Cache of processed BitBake tasks

 Download cache

 Cache of source code (git, subversion, tarballs etc.) downloaded by BitBake

Embedded Linux Conference Europe 2016 Page 7

YOCTO PROJECT: NEAT FEATURES AND CHARACTERISTICS

 Very flexible

 Fine-grained control on artifacts

 Compile-time configuration

 Extensible

 It's easy to add your own metadata or extend existing ones by adding layers

 License tracking

 You can specify what licenses your product cannot ship

 Support

 Commercial support

 Community support

 QA checks

 Help to catch problems earlier

Embedded Linux Conference Europe 2016 Page 8

SOURCE CODE MANAGEMENT

Embedded Linux Conference Europe 2016 Page 9

SOFTWARE COMPONENTS

 Public open source (git, tarballs, etc.)

 Internal projects (git)

 Binary software deliveries from suppliers (subversion)

Embedded Linux Conference Europe 2016 Page 10

SYSTEM COMPONENTS

 Yocto Project (git)

 Open source meta layers (git)

 Proprietary meta layers (git)

 All system components are git repositories assembled as git submodules in a single base git

repository

 Each commit in the base repository represents the full state of all the git repositories

 Testing changes that affect multiple submodules is easy (e.g., Yocto Project updates)

 Drawbacks

 Confusing for developers new to git

 Adding and removing submodules cannot be easily tested in CI

 Not nicely integrated to Gerrit, Gitweb or git GUI tools

 Alternatives

 Repo

 Custom scripts that save state somewhere

Embedded Linux Conference Europe 2016 Page 11

GERRIT

 Hosts git repositories for software and system components

 Topics to group commits that affect multiple repositories

 Custom tool to check out topics into a working tree (python, gerrit API’s)

 CI jobs can verify all changes with the same topic

 Positive aspect: for experienced developers this setup works well (local feature branch == topic)

 Drawbacks

 Inexperienced developers make mistakes

 Mixing unrelated changes in a single git repository, under the same topic

 Trying to merge commits that are not part of the same branch

 Gerrit UI is confusing

 Corporate IT hosted Gerrit is not up-to-date with upstream Gerrit

 Alternatives

 Patchwork/e-mail

 E-mail is a nightmare in corporate environments (Outlook, MS Exchange, HTML, Windows

users etc.)

 Github, Gitlab (we haven't tried them)

Embedded Linux Conference Europe 2016 Page 12

SOURCE CODE CHANGE INTEGRATION

 In the software component we apply changes with Gerrit (apply and merge)

 In the system integration we create pull requests that involve multiple git repositories

 e.g., a Gerrit topic that contains changes in multiple repositories

 Pull requests are called Integration Requests (IR) in our process

 Integration requests can only be issued after a positive peer review in Gerrit and successful

verification build in CI

 CI system merges and tests the merged changes before release

Embedded Linux Conference Europe 2016 Page 13

OVERVIEW OF THE CI PIPELINE

Embedded Linux Conference Europe 2016 Page 14

SOFTWARE COMPONENT DEVELOPMENT

 Software component developers work with the SDK

 Push changes to Gerrit code review

 Gerrit triggers a verification build with the SDK (includes unit tests)

 In case of successful verification, changes can be merged automatically or manually

Embedded Linux Conference Europe 2016 Page 15

SYSTEM INTEGRATION

 Two types of integration requests

 Automatically/manually submitted from a component repository

 The git commit hash in a BitBake recipe is changed

 System integration Gerrit topic affecting multiple git repositories

Embedded Linux Conference Europe 2016 Page 16

MULTI-STAGE CI

 SDK verification

 System build

 Merge verification before release

Embedded Linux Conference Europe 2016 Page 17

SDK VERIFICATION FOR SW COMPONENTS

Embedded Linux Conference Europe 2016 Page 18

Developer

SW component git Git

changes

SDK verification

build and unit test
Git

changes

Verification result

Developer

Code review

result

SW component

releases to system

integration SDK from latest

release

SYSTEM CHANGE VERIFICATION

Embedded Linux Conference Europe 2016 Page 19

Integrator

Base repository

and meta layers
Git

changes

System build and

BAT tests
Git

changes

Verification result

Integrator

Code review

result

SW component

releases to system

integration

Integration Request (IR,

pull request for multiple git trees)

Caches from latest

release: sstate, download

SYSTEM RELEASES

Embedded Linux Conference Europe 2016 Page 20

Release

managers

Base repository

and meta layers

System build and

BAT tests
Git

changes

Verification result

Integration Request (IR,

pull request for multiple git trees)

Change

Control

Board

Releases:

Tagged git tree,

Release artifacts, images

SDK, caches etc

Yes/no/

not yet

IR for merge

Further

testing

phases...

AUTOMATIC RELEASE MANAGEMENT

 Integration requests are applied and tested in a full system build

 Change Control Board can control which integration requests get merged

 A set of integration requests are collected and pushed out as a release

 New releases can be created manually or based on timer

Embedded Linux Conference Europe 2016 Page 21

CI INFRASTRUCTURE

Embedded Linux Conference Europe 2016 Page 22

 Gerrit, git and subversion servers

 Jenkins servers (several masters and even more slaves)

 Predominantly virtual machines

 Build slaves (SDK and BitBake builds)

 SDK build slaves: 45 (8 CPUs, 20GB of RAM)

 BitBake build slaves: 36 (16 CPUs, 64GB of RAM)

 Two bare metal machines (no virtualization): 40 CPUs, 128GB of RAM

 One daily build from scratch (without sstate cache)

 File and cache servers

 Database server

 Cluster of virtual machines

 Bug and issue tracking servers

Embedded Linux Conference Europe 2016 Page 23

 Test farm with special hardware, including target hardware devices

 Jenkins masters have test jobs which are triggered by build jobs

 Custom Python-based test farm framework uses RabbitMQ to trigger test executions on the

test farm

 Test farm has 16 SDK, 20 virtual targets and 12 real target executors

 Besides the test farm we also have automated tests for the build artifacts

 Test as much as possible without the target platforms

Embedded Linux Conference Europe 2016 Page 24

TEST FARM STATISTICS (1)

Embedded Linux Conference Europe 2016 Page 25

TEST FARM STATISTICS (2)

Embedded Linux Conference Europe 2016 Page 26

TEST FARM STATISTICS (3)

Embedded Linux Conference Europe 2016 Page 27

LESSONS LEARNED

 Keep it simple

 Solid foundations

 Use real distributed system technologies, not hacks on top of Jenkins and regular file transfer

tools

 Corporate networks are sometimes less reliable than Internet services

 Automate everything (ansible, puppet etc.)

 Virtualization is not an ideal solution when it comes to performance

Embedded Linux Conference Europe 2016 Page 28

LESSONS LEARNED (CONTINUED)

 Positive aspects

 It works, although sometimes administering the system is painful

 It fulfils the requirements of the project as a CI system

 Negative aspects

 Jenkins is not a distributed system

 Not everything is automated

 Some changes in the CI infrastructure cannot be tested by the CI system

Embedded Linux Conference Europe 2016 Page 29

BUILDS

Embedded Linux Conference Europe 2016 Page 30

SOFTWARE COMPONENT BUILDS

 Use the SDK provided by BitBake builds

 SDK can be extended with packages, automatically in CI jobs, or manually by users

 ccache is used to make builds faster

Embedded Linux Conference Europe 2016 Page 31

SYSTEM BUILD

 Runs inside a LXC container with Ubuntu 14.04

 The container

 Provides build isolation

 Can be constructed during build (e.g., container changes can be tested in the CI)

 Mitigates host contamination

 Prevents system components to leak into the build environment

 The influence of the host system in the build is at least reproducible

 Container changes can be deployed faster than changes in the infrastructure

 Developers are free to use any Linux distro they want and still use the container for building

Embedded Linux Conference Europe 2016 Page 32

SYSTEM BUILD - IMPLEMENTATION

 Wrapper shell script around BitBake, for each target machine

 In CI builds, synchronizes the sstate cache from the previous release before calling BitBake

 In CI builds, used a mounted NFS share for the download cache

 Developers are out of luck with regard to caches, due to network setup complexity

 Lesson learned

 Bash and set -eux -o pipefail, at least

 Cleanup in trap commands

Embedded Linux Conference Europe 2016 Page 33

SYSTEM BUILD – META LAYERS

 Each meta layer is a single git repository with a single owner (a team)

 The owner has +2 review rights for its git repository

 A change gets approved if it gets a +2 from review and a +1 from the verification build

 More than 60 meta layers

 More than 2800 recipes

 More than 400 bbappends

Embedded Linux Conference Europe 2016 Page 34

SYSTEM BUILD – BITBAKE CONFIGURATION

 template file for local.conf

 sed magic for environment-dependent configuration options (e.g., mirrors and network usage

metrics)

 custom script for setting BitBake parallelization options based on the number of CPU cores and

RAM (details later)

Embedded Linux Conference Europe 2016 Page 35

SYSTEM BUILD – BITBAKE ALL

 “all” is a special BitBake recipe that specifies everything to build

 Multiple images for the target hardware (“boot modes”)

 Image artifacts include flashing and testing tools

 Images are tarballs, not filesystem images (flashing creates filesystems)

 Building an image is a serial operation (cannot be parallelized)

 Multiple images can be build in parallel, but not the installation of packages in a single image

 Images share a lot of content, but we don't have a way to reuse the common parts

 The target images have big data blobs that we manage with git annex (plugged into BitBake)

 Image tarballs are compressed with pigz for parallel compression (using multiple CPUs)

 Support for filesystem extended attributes is needed in the future

Embedded Linux Conference Europe 2016 Page 36

SYSTEM BUILD - SDK

 Custom SDK instead of Yocto Project upstream

 In the SDK we mix target and nativesdk packages, in a way that it is transparent for users

 Motivation

 Developers struggled with the cross toolchain and cross environment setup

 Mistakes in the development of components’ build system (CMake)

 Complexity of the cross-compilation environment shifted from developers to the integration

team

 SDK content decoupled from images

 Custom namespace tooling instead of plain chroot (execution environment for the SDK, without

root access)

 Transparent cross-compilation in the SDK, using gcc, make, autotools, cmake and other tools
from $PATH

 From users perspective, it looks like a lightweight chroot

Embedded Linux Conference Europe 2016 Page 37

SYSTEM BUILD – SDK (CONTINUED)

 Automated CI tests for everything that we add to the SDK

 Even trivial tests find bugs

 It would be possible to run upstream Yocto Project's SDK tests in our SDK (some minor fixes

are needed)

 Users and CI jobs can extend the SDK with packages

 Qt Creator IDE with custom plugin to ease the development using the SDK

 Our SDK approach and tests have not yet been upstreamed

 Planned for one of the next iterations

 The SDK contains tools and tests for the CI automated tests

Embedded Linux Conference Europe 2016 Page 38

SYSTEM BUILD – PACKAGE ARCHIVE

 Format: ipk

 Package archive with additional tools, debug symbols, development packages etc.

 Due to the complexity of corporate networks, we could not set up a single package repository

server

 We distribute packages to a number of mirrors in different networks (even using different

protocols)

 Some debugging tools are only available in the package repository

 We don't support incremental updates of SDK and images using the package repository yet

 Due to the complexity of the network setup, we don't have a PR server

 We bump PRs manually

 We plan to reuse the PR server database files

Embedded Linux Conference Europe 2016 Page 39

SYSTEM BUILD - DIFFICULTIES WITH YOCTO PROJECT

 Writing proper BitBake recipes is a form of art - only a few people know how to do this correctly

 BitBake is too flexible - too much freedom

 The shared sysroot approach in the context of parallel recipe processing causes build race

conditions

 Some software enable/disable features based on the state of sysroots

 The state of sysroots vary as build tasks are executed

 Undeclared build dependencies often go unnoticed

 Developers add features to their software, but forget to specify dependencies in recipes

 Sometimes packages build fine on populated sysroots, but break due to missing

dependencies specification when built from scratch

 Developers and CI build images, instead of changed recipes with an empty sysroot

 Sstate cache hides problems until something triggers a rebuild

 Floating build dependencies

 Features are implicitly enabled/disabled based on the state of sysroot

 May cause build or test failures

Embedded Linux Conference Europe 2016 Page 40

SYSTEM BUILD - DIFFICULTIES WITH YOCTO PROJECT (CONT.)

 In our case, BitBake builds are not reproducible

 Packaging of language extensions (e.g., Java's maven, JavaScript's npm) is problematic

 Using specific package managers just hides the problem and lead to not reproducible builds

 Developers may call package managers like maven from their build scripts while generating code

 Downloading modules from the Internet may fail

 No guarantees with regard to integrity of downloaded modules

 No sum checking and no caching on the BitBake side

 May break packaging

 No license tracking

 BitBake rebuilds dependents even when it is not strictly required

 API/ABI compatibility is preserved

 Leads to long build times

Embedded Linux Conference Europe 2016 Page 41

SYSTEM BUILD - NUMBERS

 For “all” (per target machine)

 More than 22K BitBake tasks

 More than 8K packages generated (~6.4GB)

 One SDK

 ~600MB

 ~1100 packages

 Nine images (numbers on the biggest):

 ~510MB

 ~845 packages

Embedded Linux Conference Europe 2016 Page 42

SYSTEM BUILD - PROFILE

 Build times may range from 20 minutes to 5 hours

 Build performance can be hard to optimize

 Many variables to tweak

 Different build characteristics, depending on what has to be compiled (BitBake caches)

 Some heavy-weight components

 Big C++ components

 Some of the big ones are affected by dependencies that change frequently, so they have to

be rebuilt

 Several build steps cannot effectively utilize multiple CPUs

 Some tasks like do_rootfs (image creation)

 Run queue preparation

 buildstats data can be useful to understand builds

Embedded Linux Conference Europe 2016 Page 43

SYSTEM BUILD - POSTPROCESSING

 Check the presence of expected files

 Sstate cache preparation after releases

 Publishing of artifacts (packages, images, SDK, logs etc.)

 After a release, a new SDK is deployed into the system

Embedded Linux Conference Europe 2016 Page 44

BUILD OPTIMIZATIONS

Embedded Linux Conference Europe 2016 Page 45

DETERMINE BOTTLENECKS

 System resources

 CPU

 Memory

 Disk I/O

 Network I/O

 Require system monitoring tools

 Performance co-pilot (pcp)

 htop

 buildstats

 syslog

 Grafana

Embedded Linux Conference Europe 2016 Page 46

DOWNLOAD CACHE

 Alleviates the load on some slower paths in the company's network

 A special BitBake job (-c fetchall) populates the cache into a NFS share which are mounted by

the build slaves

 Does not fully validate the downloads after bitbake -c fetchall

 Corrupted downloads lead to build failures

 Ideally, we would like to be able to run offline builds (no network)

Embedded Linux Conference Europe 2016 Page 47

BITBAKE PARALLELIZATION SETTINGS

 BB_NUMBER__THREADS, PARALLEL_MAKE

 The default parallelization options set by BitBake don't work for build profile

 Compilation of a single C++ file can consume gigabytes of physical RAM

 Example: machine with 16 CPU cores (PARALLEL_MAKE=16, BB_NUMBER_THREADS=16)

 Worst case: 256 compilation tasks running at the same time

 We observed system load above 100

 Some builds run out of RAM, which leads to heavy swapping or OOM killer (breaks builds)

 Lesson learned

 Measure and set resource limits for BitBake tasks (cgroups)

 Ideally, the BitBake scheduler should take into account the system load when scheduling

 Should not spawn tasks when load and memory usage reach some limit

Embedded Linux Conference Europe 2016 Page 48

OPTIMAL PARALLELIZATION IS HARD TO GET

 In cases of lots of caching, high parallelization is desired

 In cases of low caching, high parallelization may lead to system trashing due to high resource

usage

 We use a custom script to set up parallelization options which takes number of CPU cores and

RAM into account to set the parallelization options

Embedded Linux Conference Europe 2016 Page 49

BITBAKE PARALLELIZATION HEURISTIC

mem = get_mem_total()

cpus = get_number_cpus()

mem_cpus = (mem * 1.0) / cpus

if ncpus == 1:

 BB_NUMBER_THREADS, PARALLEL_MAKE = (1, 1)

elif mem_cpus > 8:

 BB_NUMBER_THREADS, PARALLEL_MAKE = (cpus, make_j(cpus))

elif mem_cpus >= 4:

 BB_NUMBER_THREADS, PARALLEL_MAKE = (cpus, make_j(divide_cpus(cpus, 2)))

elif mem_cpus >= 2:

 BB_NUMBER_THREADS = divide_cpus(cpus, 2)

 PARALLEL_MAKE = make_j(divide_cpus(cpus, 2))

else:

 BB_NUMBER_THREADS = divide_cpus(cpus, 2)

 PARALLEL_MAKE = make_j(divide_cpus(cpus, 4))

Embedded Linux Conference Europe 2016 Page 50

BUILD SLAVE TUNING

 Avoid "disk" I/O

 Keep data on memory for as log as possible (Linux memory manager settings - sysctl)

 vm.dirty_background_bytes = 0

 vm.dirty_background_ratio = 90

 vm.dirty_expire_centisecs = 4320000

 vm.dirtytime_expire_seconds = 432000

 vm.dirty_bytes = 0

 vm.dirty_ratio = 60

 vm.dirty_writeback_centisecs = 0

 Avoid swapping

 Lots of RAM help (up to certain point)

 Increasing RAM from 64GB to 128GB on a machine with 40 CPU cores didn't improve build

times

 More aggressive parallelization options lead to system trashing, thus slower builds

 Solution: experiment; profile the build and tune resources and parallelization options

Embedded Linux Conference Europe 2016 Page 51

QUALITY ASSURANCE AND SECURITY

Embedded Linux Conference Europe 2016 Page 52

STATIC CODE ANALYSIS USING CODE SONAR

 Finds CERT programming errors like memory leaks, buffer overflows and race conditions

 Similar to Coverity

 All the BitBake recipes are recompiled using Code Sonar's compiler wrapper

 Slow: takes roughly five days

 Automated, but not directly connected to the CI workflow

Embedded Linux Conference Europe 2016 Page 53

OPEN SOURCE LICENSE COMPLIANCE

 We use the license information provide by BitBake recipes

 Additionally, we use Black Duck’s Protex to analyse source code for cases of license violation

 Automated, but not directly connected to the CI workflow

Embedded Linux Conference Europe 2016 Page 54

SECURITY VULNERABILITY ANALYSIS

 We need to know which CVEs affect our products

 Tooling provided by Yocto Project patches

 Black Duck also supports this, but we are not using it yet

Embedded Linux Conference Europe 2016 Page 55

CONCLUSIONS

Embedded Linux Conference Europe 2016 Page 56

ON YOCTO PROJECT

 Community support on mailing lists, IRC and bug tracker is good

 Documentation is good, but the system is complex

 Yocto Project's core meta layers are our reference in terms of quality

 It's difficult to achieve the same level of quality as Yocto Project's in our meta layers

 Some fundamental BitBake design decisions cause us some problems

 Shared sysroots lead to build race conditions and dependency issues

 Huge amount of global, mutable variables

 No reproducible builds (in our case), even with the use of standard build environment

(container)

 We are working on making them reproducible and intend to have this feature by the time we

ship the product

Embedded Linux Conference Europe 2016 Page 57

LESSONS LEARNED ON THE DESIGN OF OUR CI SYSTEM

 CI systems can be used to automate any task of the development process

 CI software builds find bugs

 CI tests, even if trivial, also find bugs

 Cultural change: some developers and project partners appreciate the feedback of the CI system

 Cultural resistance: some project partners and developers don't

 Quality of service in corporate network makes the implementation of CI systems difficult,

reliability suffers

 Reliability of the system depends on the reliability of the parts (hypothetical example):

 Source code servers: 95% availability

 Build reliability: 90% and then developers changes on top

 Tests: 90% reliability

 => 0.95 * 0.90 * 0.90 = 76,9% overall reliability

Embedded Linux Conference Europe 2016 Page 58

Mario Domenech Goulart

mario.goulart@bmw-carit.de

Mikko Rapeli

mikko.rapeli@bmw-carit.de

Embedded Linux Conference Europe 2016 Page 59

