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Outline
 Introduction to Ftrace
 Adding function graph tracing to ARM
 Duration Filtering

− Optimizing the discard operation
 Post-trace analysis tools
 Performance impact
 Resources



  

Introduction to Ftrace
 What is Ftrace?
 Overview of operation

− Instrumentation
− Runtime operation
− Data capture
− Trace log output

 Function graph tracing



  

What is Ftrace?
 Ftrace is the first generic tracing system to 

get mainlined (Hurray!!)
− Mainlined in 2.6.27
− Derived from RT-preempt latency tracer

 Provides a generic framework for tracing
− Infrastructure for defining tracepoints
− Ability to register different kinds of tracers
− Specialized data structure (ring buffer) for 

trace data storage



  

Overview of FTrace Operation
 Instrumentation

− Explicit
 Tracepoints defined by declaration
 Calls to trace handler written in source code

− Implicit
 Automatically inserted by compiler

− Uses gcc ‘-pg’ option
 Inserts call to ‘mcount’ in each function prologue
 Easy to maintain – no source code modifications
 Only practical way to maintain 20,000+ tracepoints



  

mcount Routine
 ‘mcount’ is called by every kernel function

− Except inlines and a few special functions
 Must be a low-overhead routine
 Incompatible with some compiler optimizations

− E.g. cannot omit frame-pointers on ARM

E

− Compiler disables some optimizations automatically
− Works with ARM EABI
− Assembly analysis indicates that mcount callers have 

well-defined frames

w

 Misc note:
− New mcount routine (_gnu_mcount) is coming



  

Code to Call mcount

00000570 <sys_sync>:
570: e1a0c00d mov ip, sp
574: e92dd800 stmdb sp!, {fp, ip, lr, pc}
578: e24cb004 sub fp, ip, #4 ; 0x4

57c: e3a00001 mov r0, #1 ; 0x1
580: ebffffa0 bl 408 <do_sync>
584: e3a00000 mov r0, #0 ; 0x0
588: e89da800 ldmia sp, {fp, sp, pc}

00000570 <sys_sync>:
570: e1a0c00d mov ip, sp
574: e92dd800 stmdb sp!, {fp, ip, lr, pc}
578: e24cb004 sub fp, ip, #4 ; 0x4
57c: e1a0c00e mov ip, lr
580: ebfffffe bl 0 <mcount>
584: 00000028 andeq r0, r0, r8, lsr #32
588: e3a00001 mov r0, #1 ; 0x1
58c: ebffff9d bl 408 <do_sync>
590: e3a00000 mov r0, #0 ; 0x0
594: e89da800 ldmia sp, {fp, sp, pc}



  

Trace setup at run-time
 Pseudo-files in debugfs

− e.g. mount debugfs –t debugfs /debug
 Select a tracer

− e.g. echo function_graph >current_tracer
 Set tracing parameters

− e.g. echo 100 >tracing_threshhold
− echo funcgraph-abstime >trace_options



  

Trace Data Capture
 Ring Buffer

− Specialized structure for collecting trace data
 Manages buffer as list of pages

− Latest version is lockless for writing
 Ability to atomically reserve space for an event

− Automatic timestamp management
− Per-cpu buffers

 Avoids requiring cross-CPU synchronization
 Also avoids cache collisions

− Very important for performance



  

Trace Output
 Output is human readable text

− No special tools required to collect trace data
 Examples:

− cat trace
 Returns EOF at end of trace data

− cat trace_pipe | grep foo >log.txt
 Blocks at end of trace data

 Quick enable/disable
− echo 0 >tracing_enabled



  

Ring Buffer Operations
 ring_buffer_lock_reserve

− Atomically reserve space in buffer
 ring_buffer_event_data

− Get pointer to place to fill with data
 ring_buffer_unlock_commit

− Commit event data
 ring_buffer_discard_commit

− Discard reserved data space



  

Function graph tracing
 Traces function entry and exit
 What is it good for?

− See relationship between functions
 Is a GREAT way to learn about kernel
 Find unexpected/abnormal code paths

− Measure function duration
 Find long latencies and performance problems

 But, the -pg option only instruments 
function entry



  

Hooking function exit
 Normal ‘function’ tracer just traces function 

entry capture
 To capture function exit, a trampoline is 

used
− mcount:

 Saves real return address 
 Replaces return address with address of 

trampoline
− In exit tracer, return to the real return address



  

Diagram of Trampoline
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Filtering by Duration
 Compare duration to threshhold
 Discard function entry and exit events
 Easy to discard exit event

− Just don’t commit data
 Trickier to discard entry event

− ring_buffer_event_discard() converts event to 
padding if subsequent events have been 
committed to buffer

 Wastes a lot of space
 Severely constrains the time coverage for a trace



  

Optimizing Event Discard
 Normally, can’t discard events after other 

events are committed to buffer
 However, with duration filtering, if an event 

is filtered for duration, then all children 
functions are filtered also

 “Last event” in buffer is always function 
entry for current exit

− Only have to “rewind” one event, which is 
relatively easy  (and likely safe)



  

Results from optimized discard

166979.44s †3.328M100000Rewind_tail

3556531.26 s3.327M1000Rewind_tail

273160.39 s3.295M0Rewind_tail

264381.34 s3.309M100000Discard_event

266301.29 s3.310M1000Discard_event

27392   0.39 s3.292M0Discard_event

Trace 
event 
count

Time covered 
by Trace

Total 
Function 

Count

Duration 
Filter 
Value

Discard 
operation

†  The test only lasted 79 seconds—extrapolating the results 
yields a trace coverage time of 27 minutes



  

Example of Use
$ mount debugfs -t debugfs /debug
$ cd /debug/tracing
$ cat available_tracers
function_graph function sched_switch nop
$ echo 0 >tracing_enabled
$ echo 1000 >tracing_thresh
$ echo function_graph >current_tracer
$ echo 1 >tracing_enabled
$ for i in ‘seq 1 10‘ ; do ls /bin | sed s/a/z/g ; done
$ echo 0 >tracing_enabled
$ echo funcgraph-abstime >trace_options
$ echo funcgraph-proc >trace_options
$ cat trace



  

Function Graph Results



  

Post-trace analysis
 Using ftd to analyze data

− Measuring function counts
− Measuring “local time”

 wall time minus sub-routine wall time
 May be wrong if we block

− Need an option to subtract time that function was 
scheduled out

− Filter, sort, select output columns,etc.



  

Ftd Output
Function                            Count Time       Average  Local     
----------------------------------- ----- ---------- -------- ----------
schedule                               59 1497735270 25385343 1476642939
sys_write                              56 1373722663 24530761    2892665
vfs_write                              56 1367969833 24428032    3473173
tty_write                              54 1342476332 24860672 1212301170
do_path_lookup                         95 1076524931 11331841   34682198
__link_path_walk                       99 1051351737 10619714    6702507
rpc_call_sync                          87 1033211085 11875989    1700178
path_walk                              94 1019263902 10843233    3425163
rpc_run_task                           87  960080412 11035407    2292360
rpc_execute                            87  936049887 10759194    2316635
__rpc_execute                          87  932779083 10721598   11383353
do_lookup                             191  875826405  4585478    9510659
call_transmit                         100  785408085  7854080    5871339
__nfs_revalidate_inode                 38  696216223 18321479    1652173
nfs_proc_getattr                       38  690552053 18172422    1234634



  

Performance issues
 Overhead of tracing

− Can be substantial
 Average function duration = 1.72 μs
 Overhead = 18.89 microseconds per function

− Test  used was CPU-bound
 find /sys >/dev/null
 With I/O bound test, ratio of overhead to average 

function length should be much lower



  

Overhead Measurements

18.89 us20.61 us3.29M72.15 sGraph active

3.50 us5.22 us2.98M19.85 sGraph 
disabled

0.33 us2.05 us2.92M10.30 sNop

-1.72 us2.91M9.25 sTRACE=n

Overhead 
per 

function

Time per 
function

Function 
count

Elapsed 
Time

Tracer 
Status



  

Roadmap and future work
 Mainline stuff

− ARM function graph tracing

A

− Duration filtering
 Recently rejected – back to the drawing board??

 Need to use functionality to improve 
bootup time



  

Measuring kernel boot
 Requirements for using ftrace in early boot

− Availability of clock source
− Static(?) definition of trace parameters

 Start location for tracing (optimally start_kernel)

S

− Initialization of ring buffer and tracer 
registration

 Would be nice to do at compilation time, but that’s 
hard!



  

References
 Ftrace tutorial at OLS 2008

− http://people.redhat.com/srostedt/ftrace-tutorial.odp
− Video: http://free-electrons.com/pub/video/2008/ols/

ols2008-steven-rostedt-ftrace.ogg

 “The world of Ftrace” at Spring 2009 LF 
Collaboration Summit

− http://people.redhat.com/srostedt/ftrace-world.odp

 Patches and tools for this talk
− http://elinux.org/Ftrace_Function_Graph_ARM



  

Q & A
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