

Measuring Function Duration
with Ftrace

By Tim Bird
Sony Corporation of America
<tim.bird (at) am.sony.com>

On ARM

Outline
 Introduction to Ftrace
 Adding function graph tracing to ARM
 Duration Filtering

− Optimizing the discard operation
 Post-trace analysis tools
 Performance impact
 Resources

Introduction to Ftrace
 What is Ftrace?
 Overview of operation

− Instrumentation
− Runtime operation
− Data capture
− Trace log output

 Function graph tracing

What is Ftrace?
 Ftrace is the first generic tracing system to

get mainlined (Hurray!!)
− Mainlined in 2.6.27
− Derived from RT-preempt latency tracer

 Provides a generic framework for tracing
− Infrastructure for defining tracepoints
− Ability to register different kinds of tracers
− Specialized data structure (ring buffer) for

trace data storage

Overview of FTrace Operation
 Instrumentation

− Explicit
 Tracepoints defined by declaration
 Calls to trace handler written in source code

− Implicit
 Automatically inserted by compiler

− Uses gcc ‘-pg’ option
 Inserts call to ‘mcount’ in each function prologue
 Easy to maintain – no source code modifications
 Only practical way to maintain 20,000+ tracepoints

mcount Routine
 ‘mcount’ is called by every kernel function

− Except inlines and a few special functions
 Must be a low-overhead routine
 Incompatible with some compiler optimizations

− E.g. cannot omit frame-pointers on ARM

E

− Compiler disables some optimizations automatically
− Works with ARM EABI
− Assembly analysis indicates that mcount callers have

well-defined frames

w

 Misc note:
− New mcount routine (_gnu_mcount) is coming

Code to Call mcount

00000570 <sys_sync>:
570: e1a0c00d mov ip, sp
574: e92dd800 stmdb sp!, {fp, ip, lr, pc}
578: e24cb004 sub fp, ip, #4 ; 0x4

57c: e3a00001 mov r0, #1 ; 0x1
580: ebffffa0 bl 408 <do_sync>
584: e3a00000 mov r0, #0 ; 0x0
588: e89da800 ldmia sp, {fp, sp, pc}

00000570 <sys_sync>:
570: e1a0c00d mov ip, sp
574: e92dd800 stmdb sp!, {fp, ip, lr, pc}
578: e24cb004 sub fp, ip, #4 ; 0x4
57c: e1a0c00e mov ip, lr
580: ebfffffe bl 0 <mcount>
584: 00000028 andeq r0, r0, r8, lsr #32
588: e3a00001 mov r0, #1 ; 0x1
58c: ebffff9d bl 408 <do_sync>
590: e3a00000 mov r0, #0 ; 0x0
594: e89da800 ldmia sp, {fp, sp, pc}

Trace setup at run-time
 Pseudo-files in debugfs

− e.g. mount debugfs –t debugfs /debug
 Select a tracer

− e.g. echo function_graph >current_tracer
 Set tracing parameters

− e.g. echo 100 >tracing_threshhold
− echo funcgraph-abstime >trace_options

Trace Data Capture
 Ring Buffer

− Specialized structure for collecting trace data
 Manages buffer as list of pages

− Latest version is lockless for writing
 Ability to atomically reserve space for an event

− Automatic timestamp management
− Per-cpu buffers

 Avoids requiring cross-CPU synchronization
 Also avoids cache collisions

− Very important for performance

Trace Output
 Output is human readable text

− No special tools required to collect trace data
 Examples:

− cat trace
 Returns EOF at end of trace data

− cat trace_pipe | grep foo >log.txt
 Blocks at end of trace data

 Quick enable/disable
− echo 0 >tracing_enabled

Ring Buffer Operations
 ring_buffer_lock_reserve

− Atomically reserve space in buffer
 ring_buffer_event_data

− Get pointer to place to fill with data
 ring_buffer_unlock_commit

− Commit event data
 ring_buffer_discard_commit

− Discard reserved data space

Function graph tracing
 Traces function entry and exit
 What is it good for?

− See relationship between functions
 Is a GREAT way to learn about kernel
 Find unexpected/abnormal code paths

− Measure function duration
 Find long latencies and performance problems

 But, the -pg option only instruments
function entry

Hooking function exit
 Normal ‘function’ tracer just traces function

entry capture
 To capture function exit, a trampoline is

used
− mcount:

 Saves real return address
 Replaces return address with address of

trampoline
− In exit tracer, return to the real return address

Diagram of Trampoline
Caller

Function

Func exit
Tracer

mcount

Func entry
Tracer

Thead_info
struct ret_stack

Stack

caller 1
caller 2

ret addr

Filtering by Duration
 Compare duration to threshhold
 Discard function entry and exit events
 Easy to discard exit event

− Just don’t commit data
 Trickier to discard entry event

− ring_buffer_event_discard() converts event to
padding if subsequent events have been
committed to buffer

 Wastes a lot of space
 Severely constrains the time coverage for a trace

Optimizing Event Discard
 Normally, can’t discard events after other

events are committed to buffer
 However, with duration filtering, if an event

is filtered for duration, then all children
functions are filtered also

 “Last event” in buffer is always function
entry for current exit

− Only have to “rewind” one event, which is
relatively easy (and likely safe)

Results from optimized discard

166979.44s †3.328M100000Rewind_tail

3556531.26 s3.327M1000Rewind_tail

273160.39 s3.295M0Rewind_tail

264381.34 s3.309M100000Discard_event

266301.29 s3.310M1000Discard_event

27392 0.39 s3.292M0Discard_event

Trace
event
count

Time covered
by Trace

Total
Function

Count

Duration
Filter
Value

Discard
operation

† The test only lasted 79 seconds—extrapolating the results
yields a trace coverage time of 27 minutes

Example of Use
$ mount debugfs -t debugfs /debug
$ cd /debug/tracing
$ cat available_tracers
function_graph function sched_switch nop
$ echo 0 >tracing_enabled
$ echo 1000 >tracing_thresh
$ echo function_graph >current_tracer
$ echo 1 >tracing_enabled
$ for i in ‘seq 1 10‘ ; do ls /bin | sed s/a/z/g ; done
$ echo 0 >tracing_enabled
$ echo funcgraph-abstime >trace_options
$ echo funcgraph-proc >trace_options
$ cat trace

Function Graph Results

Post-trace analysis
 Using ftd to analyze data

− Measuring function counts
− Measuring “local time”

 wall time minus sub-routine wall time
 May be wrong if we block

− Need an option to subtract time that function was
scheduled out

− Filter, sort, select output columns,etc.

Ftd Output
Function Count Time Average Local
----------------------------------- ----- ---------- -------- ----------
schedule 59 1497735270 25385343 1476642939
sys_write 56 1373722663 24530761 2892665
vfs_write 56 1367969833 24428032 3473173
tty_write 54 1342476332 24860672 1212301170
do_path_lookup 95 1076524931 11331841 34682198
__link_path_walk 99 1051351737 10619714 6702507
rpc_call_sync 87 1033211085 11875989 1700178
path_walk 94 1019263902 10843233 3425163
rpc_run_task 87 960080412 11035407 2292360
rpc_execute 87 936049887 10759194 2316635
__rpc_execute 87 932779083 10721598 11383353
do_lookup 191 875826405 4585478 9510659
call_transmit 100 785408085 7854080 5871339
__nfs_revalidate_inode 38 696216223 18321479 1652173
nfs_proc_getattr 38 690552053 18172422 1234634

Performance issues
 Overhead of tracing

− Can be substantial
 Average function duration = 1.72 μs
 Overhead = 18.89 microseconds per function

− Test used was CPU-bound
 find /sys >/dev/null
 With I/O bound test, ratio of overhead to average

function length should be much lower

Overhead Measurements

18.89 us20.61 us3.29M72.15 sGraph active

3.50 us5.22 us2.98M19.85 sGraph
disabled

0.33 us2.05 us2.92M10.30 sNop

-1.72 us2.91M9.25 sTRACE=n

Overhead
per

function

Time per
function

Function
count

Elapsed
Time

Tracer
Status

Roadmap and future work
 Mainline stuff

− ARM function graph tracing

A

− Duration filtering
 Recently rejected – back to the drawing board??

 Need to use functionality to improve
bootup time

Measuring kernel boot
 Requirements for using ftrace in early boot

− Availability of clock source
− Static(?) definition of trace parameters

 Start location for tracing (optimally start_kernel)

S

− Initialization of ring buffer and tracer
registration

 Would be nice to do at compilation time, but that’s
hard!

References
 Ftrace tutorial at OLS 2008

− http://people.redhat.com/srostedt/ftrace-tutorial.odp
− Video: http://free-electrons.com/pub/video/2008/ols/

ols2008-steven-rostedt-ftrace.ogg

 “The world of Ftrace” at Spring 2009 LF
Collaboration Summit

− http://people.redhat.com/srostedt/ftrace-world.odp

 Patches and tools for this talk
− http://elinux.org/Ftrace_Function_Graph_ARM

Q & A

	Measuring Function Duration with Ftrace
	Outline
	Introduction to Ftrace
	What is Ftrace?
	Overview of FTrace Operation
	mcount Routine
	Code to Call mcount
	Trace setup at run-time
	Trace Data Capture
	Trace Output
	Ring Buffer Operations
	Function graph tracing
	Hooking function exit
	Diagram of Trampoline
	Filtering by Duration
	Optimizing Event Discard
	Results from optimized discard
	Example of Use
	Function Graph Results
	Post-trace analysis
	Ftd Output
	Performance issues
	Overhead Measurements
	Roadmap and future work
	Measuring kernel boot
	References
	Q & A

