Secure Containers
in Embedded Deployments

Solutions for containers in embedded

Stefano Stabellini \f‘%/ @stabellinist

The Problem

The problem

Package applications for the target

Contain all dependencies
Easy to update, Independent lifecycle

Run applications on the target
Run in isolation
No interference between applications

The problem

Package applicatigfor the target

Contain all dependencigs
Easy to update, Independ

Run applications on the t
Run in isolation

No interference between app lons

o

The problem

Package applications for

Contain all dependencie
Easy to update, Iy

Run applications
Run in isolation
No interference between applications

Packaging vs. Runtime

OCI Image Spec vs. OCIl Runtime Spec

Containers != Linux Namespaces

Docker Registry

_

Cloud Native App
(rootfs +
manifest)

Docker >

Linux Namespaces

Cloud-Native App

App binaries 1
App libraries]

Cloud-Native App

App binaries 1
App libraries]

Linux Namespaces

Linux Namespaces

Linux Kernel

000

» 2

[Docker Engine]

[containerd

]

e
RS

~
\\ \\\
\ ~
\ ~
\
| | | | i

—

Same Docker Ul and commands

User interacts with the Docker Engine

Engine communicates with containerd

containerd spins up runc or other OCI
compliant runtime to run containers

The problem with
Linux namespaces

Cloud-native Cloud-native Cloud-native
App App App
POSIX
Linux kernel

Cloud-native Cloud-native Cloud-native
App App App
POSIX
Linux kernel

Large surface of attack

On average, 3 privilege

escalation vulnerabilities per

Linux release!

Malicious App Cloud-native Cloud-native
App App
_t POSIX
Linux kernel

Large surface of attack

On average, 3 privilege

escalation vulnerabilities per

Linux release!

Malicious App Cloud-native Cloud-native
App App
_t POSIX
Linux kernel

Large surface of attack

On average, 3 privilege

escalation vulnerabilities per

Linux release!

Malicious App Cloud-native Cloud-native
App App

Linux kernel

Large surface of attack

On average, 3 privilege

escalation vulnerabilities per

Linux release!

Malicious App Cloud-native Cloud-native
App App

Linux kernel

Large surface of attack

On average, 3 privilege

escalation vulnerabilities per

Linux release!

Security hardening techniques

From “Understanding and Hardening Linux Containers” by

NCC Group:

[...]

Run unprivileged containers (user namespaces, root capability, dropping)
Apply a Mandatory Access Control system, such as SELinux

Build a custom kernel binary with as few modules as possible

Apply sysctl hardening

Apply disk and storage limits

Control device access and limit resource usage with cgroups

Drop any capabilities which are not required for the application within the
container

Security hardening techniques

e Use custom mount options to increase defense in depth

e Apply GRSecurity and PAX patches to Linux

e Reduce Linux attack surface with Seccomp-bpf

e |solate containers based on trust and exposure

e Logging, auditing and monitoring is important for container deployment
e Use hardware virtualization along application trust zones

Security hardening techniques

Securing Linux namespaces is possible but very difficult

It requires specific knowledge of the cloud-native app
Auditing and monitoring should be performed everywhere
Using virtualization for isolation is still recommended

Google

fedora how to disable

=

fedora 20 how to disable selinux
fedora 23 how to disable selinux
fedora ow-tordisabte nouveau driver
fedora 22 how to disable selinux

fedora 22 how to disable wayland

fedora 20 how to disable screen lock
fedora how to disable firewall

fedora how to disable ipv6

Google Search I'm Feeling Lucky

Report inappropriate predictions

e No multi-tenancy

e Only run cloud-native apps from
the same user on the same host

e Use VMs (or bare-metal) as
security boundary

e Need to handle both VMs
provisioning and Cloud-Native
app provisioning

Cloud-native Cloud-native Cloud-native
App App App
same owner same owner same owner
POSIX
Linux kernel
Xen

Virtual interface, on average:

—~— Xen PV: 1 priv escalation vuln/ year
KVM: 4 priv escalation vuln / year

Hen

Linux Namespaces: very embedded problems

Multi-tenancy is not supported
Mixed-criticality workloads are not supported
Limits on resources utilization hard to enforce
Real-time support is difficult

Certifications are very difficult

Linux Namespaces: v!?

Multi-tenancy is not support

A

Mlxed -criticality workload

EPAM

CLOUD

Telematics Simulation Agent ver 1.0

Telematics Simulation Agent ver 2.0

Monitoring Dashboard

Driver Behavior Based Insurance Backend

S

DomO - Control

Dom0 Services

Minimal rootfs

Linux Kernel w/o
HW Drivers

DomD - HW Drivers & Cluster

Cluster Simulation App

Wayland/Weston

Wayland BE
(Events/Display)

ALSA w

Linux Kernel with GPU and

other HW Drivers

DomU 3 Fusion

Telematics simulation
Agent (Acceleration,
Braking, Corning, GPS)

Minimal rootfs
with systems
library

Container
mgmt tool

Linux Kernel w/o
HW Drivers

DomU - Linux VI

IVI Simulation App

MW Frameworks

PV PV

DISPLAY | EVENTS | SOUND

PV

Linux Kernel with GPU and

without other HW Drivers

TrustZone

Trusted Apps

L Xen

Runl/

» 2

[Docker Engine]

[containerd

]

e
RS

\ e
\ S
\ ~
\

—
3
o
~,
~
\\
~
~
~
~

Same Docker Ul and commands

User interacts with the Docker Engine

Engine communicates with containerd

containerd spins up runc or other OCI
compliant runtime to run containers

Virtualization
as container runtime

Virtualization

e Security, Isolation and Partitioning
e Multi-tenancy

e Mixed-criticality workloads

e “Componentization”

e Resilience

e Hardware access to applications

e Real-time support

Hypervisors in Embedded != Cloud

Different requirements:

¢ small codebase (safety, certifications)
e real time schedulers

e |ow, deterministic irq latency

e short boot times

e small footprint

e non-PCl device assignment

e driver domains

e Co-processor virtualization

Hypervisors in Embec Cloud

Different requirements:

e small codebase (safety, certifications) 4

e real time schedulers ‘
‘ e low, deterministic i irq Iatency : e

-

® sha Oottl

foc prmt

VI e _,.:IV

en_A@A/l

= Project

Xen Project

The hypervisor with a micro-kernel design

Extensive feature-set, highly customizable
real time, device passthrough (x86, ARM32, ARM64), wide hardware support, PV drivers

Small codebase < 60K supports Kconfig
Real-time support out of the box: real time schedulers, pinning
Xen on ARM: A lean and simple architecture

No cruft, No emulation, No QEMU; Small attack surface; One type of guest

PVH guests already available on x86; PVH-only Xen in development

Transparent Security Process

Yes but,
Does it run containers?

Xen as container runtime

VM
Cloud-native Cloud-native Cloud-native
App App App
POSIX
Linux Linux Linux
VMX

Embedded Hypervisor

1 container app <-->1 VM
Secure by default

Mix and match traditional VMs
and container apps on a single

platform

Support mixed criticality
workloads

Support real time apps

Support devicesassignment

Hen

How do we do it?

Containers != Linux Namespaces

Docker Registry

L Cloud-Native

App

Docker >

This is just
rootfs + manifest

Linux Namespaces

Cloud-Native App

App binaries 1
App libraries]

Cloud-Native App

App binaries 1
App libraries]

Linux Namespaces

Linux Namespaces

Linux Kernel

Containers for packaging, Xen for runtime

1. Fully static use-cases: use containers as a packaging format
extract the rootfs, run each container as Virtual Machine manually

see singularity http://singularity.lbl.gov/

2. Run containers as VMs automatically with rkt and stagel-xen

strong isolation
support multi-tenancy and mixed-criticality workloads

support real time requirements
also see RunV, Kata Containers, KubeVirt, Virtlet Nen

CoreOS rkt

@ rkt

A security-minded, standards-based container engine

CoreOS rkt

bashisystemd/kubelet
invoking process

lfo rk(2) +exec(3)

stagel
rkt

exec(3)

stagel
Y
entrypoint
“coreos.com/rkt/stage 1/run”

stage2 / \ stage2

"apps.app.exec” "apps.app.exec”
appl app2 7)) w28

Introducing stagel-xen

Docker Registry

-

Cloud-Native
App

CoreOS rk>

VM

Cloud-Native App

App binaries 1
App libraries]

Cloud-Native App

App binaries 1
App libraries]

VM

VM

Xen

Stagel-xen: design

e ACI format = tarball + manifest
e well defined entry points

e based on x|l and 9pfs

e written in bash and golang

e multiple networking models (bridge, nat, pvcalls)

PVCalls

PV Calls

Only support POSIX apps -> Virtualize at the POSIX level

Few selected POSIX calls are sent to DomO

e jt’s the right abstraction layer for cloud-native apps
e monitoring apps becomes easy and cheap

— monitor network and filesystem access

— easy to identify changes in access patterns
e very good performance

PV Calls

Cloud-native App

VM

DomO

PV Calls
——>
POSIX
Linux DomU
PV Interface
Xen

Each app is run in a small separate
Xen VM for isolation.

POSIX calls are confined within the
VM, “emulated” by the guest kernel.

Few selected syscalls are handled
securely by DomO (filesystem and
socket syscalls primarily).

Cloud-native app VM

All other
syscalls

PV Calls

2N

. 3

U

Syscall
frontend

.

NS

Linux DomU internals

PV Interface

Xen

DomO

Syscall
backend

PV Calls for networking

e Ports openedin a VM, are opened on the host
e A great match for containers engines

e Bind VM network calls to different domO network
namespaces

e Zero-conf networking in VMs
— no need for a bridge in dom0O
— works with wireless networks, VPNs, any other special
configurations in DomO

Considerations on Meltdown

Meltdown

Linux (x86 and ARM) is affected

Xen on ARM Virtual Machines are unaffected

PVH and HVM Virtual Machines on x86 are unaffected
PV Virtual Machines on x86 are affected, Xen was fixed

Performance: Meltdown aftermath

Intel NUC 5i5MYHE

2 Intel Core i5-5300U CPU @ 2.30GHz
4GB of RAM

Xen 4.11-unstable cs 52pa201362aabab09d44beca67967¢1053721ac2

Linux 4.15 with and without CONFIG_PAGE_TABLE_ISOLATION

DomO0: 1.4G RAM, 2 vcpu
DomU / Native: 2G RAM, 2 vcpus

Performance: Meltdown aftermath

CompileBench, Higher is Better

230
225
220
215
210

205

MB/s

200
195
190 NEYOYE Native | Xen VM
185

180

175
Linux 4.15 Linux 4.15 Linux 4.15 s ad

o 8 on en -
L oten

Conclusions

Containers are a great packaging format
Linux namespaces are not suitable for all use-cases
Virtualization offers a secure-by-default runtime environment

Watch out for announcements at
blog.xenproject.org
and
www.linuxfoundation.org
in the next few months!

b
g R

(S TR N /

7 N b, 4

A 7)) '//2»/ ' \\\,
4 AP
. e

Demo

Stefano Stabellini
sstabellini AT kernel.org
twitter.com/stabellinist

