
1

Making Wireless

1

Tools and Techniques for Debugging
Embedded Linux Systems



2

Making Wireless

Overview

• Debugging with prints
• Logging to circular buffers
• SW trace tools
• ETM
• Observability and GPIOs
• JTAG
• Register dumps and decoders



3

Making Wireless

Printf debugging

• Basic debugging technique
• Simple to use



4

Making Wireless

printk loglevels

• From KERN_EMERG to KERN_DEBUG
– pr_emerg to pr_debug

• Can change on the kernel command line
– loglevel= parameter

• Can change after bootup
– /proc/sys/kernel/printk
– /proc/sysrq-trigger



5

Making Wireless

Custom debug implementations

• Example: drivers/video/omap2/dss/dss.h



6

Making Wireless

Custom debug implementations

• Example: drivers/usb/musb/musb_debug.h



7

Making Wireless

Printk tips and tricks

• CONFIG_PRINTK_TIME
• CONFIG_EARLY_PRINTK

– CONFIG_DEBUG_LL and the printascii patch
• CONFIG_LOG_BUF_SHIFT

• Accessing the printk buffer with a JTAG debugger

• http://elinux.org/Kernel_Debugging_Tips



8

Making Wireless

Use standard kernel debug interfaces

• pr_debug
• dev_dbg

• Why?



9

Making Wireless

The problem with prints

• It can change the timing
– sprintf call

• How long does this take

– serial port delays
• How long does a UART transmission take?

– Does this change with USB-UARTs?
» What about regular displays?

– Can we use higher baud rate?



10

Making Wireless

The problem with prints

Debug
Level

TX RX TX RX
1 169 65
3 161 32 1.25 0.16
5 113 18 0.49 0.07

Prints to console disabled Prints to console enabled

Throughput (Mbps)

Notes:
Debug level 3 adds 19 lines of print per transfer for TX and 40 for RX
Debug level 5 adds 37 and 92 respectively



11

Making Wireless

Dynamic printks

• CONFIG_DYNAMIC_DEBUG
– Introduced in 2.6.30

• Operates on pr_debug/dev_dbg

• More info
– Documentation/dynamic-debug-howto.txt
– http://lwn.net/Articles/434833/



12

Making Wireless

Circular buffers

• Useful when you want to capture the last few
things that were going on in the system

• In some cases, single character circular buffers
are all that you can afford (DSP SW…)



13

Making Wireless

Circular buffers (Case Study - MUSB)

• MUSB double buffering
– Data transfers stop after a while when double-packet

buffering enabled
– Works for short amounts of data

• Intermittent failure

– With debug enabled, cannot reproduce failure
• Even if not printing to console

– No failures with single-packet buffering (existing code)



14

Making Wireless

Circular buffers (Case Study - MUSB)

• Turned off prints, and selectively enabled key
prints
– No luck – still hard to reproduce

• Set up a circular buffer to which I sprintf
interesting variables
– read from debugfs when the issue is reproduced
– No luck – failure disappears



15

Making Wireless

Circular buffers (Case Study - MUSB)

• Set up a circular buffer to hold a single character
– Instrument code to write a single character to this buffer

at interesting points in the code
– Dump this buffer when we hit the failure

• Bingo!
– Hit the failure, and still have a good trace of the

program flow
– Now we know where to look



16

Making Wireless

Circular buffers (Case Study - MUSB)



17

Making Wireless

SW Trace Tools

• Tracepoints and markers
• Ftrace
• LTTng
• Perf



18

Making Wireless

Protocol Analyzers

• USBMON
• Wireshark

• What about other protocols?
– I2C, MMC, SPI, …?



19

Making Wireless

HW trace – ETM/ETB

• What is ETM
– Embedded Trace Macrocell

• The ETM can capture the program counter value
upon certain events (waypoints)
– A waypoint is a point where instruction execution may

change the program flow
• Branch instructions
• Exceptions



20

Making Wireless

HW trace – ETM/ETB

• ETB
– ETB is on SoC buffer
– ETB buffer is usually small – 2k to 8k

• (about 10-30k lines of code)

• ETM
– Streaming same trace content to an external trace port
– Needs to be continuously read by an ‘external trace

receiver’



21

Making Wireless

HW trace – ETM/ETB

• ETM
– Needs JTAG Debugger
– Needs external trace receiver

• ETB
– Can be dumped using just a JTAG debugger
– Can be dumped using software

• See kernel driver for ETB/ETM
– arch/arm/kernel/etm.c

• Analysis software:
– https://github.com/virtuoso/etm2human



22

Making Wireless

HW trace – ETM/ETB

• Why is it useful
– Very accurate profiling
– No need to instrument the code
– Can be used to reconstruct program flow
– Can step back in code

• How?



23

Making Wireless

ETM - Example



24

Making Wireless

ETM - Example



25

Making Wireless

Observability of internal signals

• Some SoCs expose internal signals (DMA request
lines, interrupt request lines, …) to the outside
world

• Since there are a limited number of pads on an
SoC, there is usually a way to configure which
signal one wants to export out
– Once configured, these signals can be observed on the

corresponding pad



26

Making Wireless

Example – Observability on OMAP3

CORE MUX i

WKUP MUX i

128 32

HW_DBG_i

i = 0..17



27

Making Wireless

Example – Observability on OMAP3
• What is available

– Internal clocks
– IRQ lines (any IRQ - up to 4 at a time)
– DMA request lines (up to 4 at a time)
– Power domain status
– Wakeup events

– Tie high
– Tie low

• Useful to check if the pin muxing and other settings are
configured correctly

• and to check if you’re actually observing the correct line

• Also useful as general purpose GPIOs without going through
the GPIO module 



28

Making Wireless

GPIO markers

• Toggle GPIOs at interesting points in the code
– Observe with a scope (or even better, a logic analyzer)

• Why is this technique needed?
– No need to depend on time counters in the SoC
– Time resolution offered by scope/LA is much better

– Can trigger on bus events + software conditions
• Can cross-trigger JTAG debugger to halt the CPU as well



29

Making Wireless

Observability and GPIO markers
• Advantages

– Good way to extract timing information (for debug and profiling
both), without deeply affecting the system

– Code instrumentation is simpler – may boil down to a simple
register write

– Good profiling tool
• Especially when combined with ETM

• Disadvantages
– Cannot get values of variables/parameters
– No framework - easy for debugger to make mistakes?
– May not have enough spare pins

• Sometimes pads are not accessible on near-production boards
– Scope/LA are expensive

• especially the good ones



30

Making Wireless

GPIO markers – Tips and Tricks

• Toggle each GPIO before starting to debug - to
make sure the setup is right

• Beware: opposite drives and possible board
damage

• Toggling GPIOs from userspace
– Documentation/gpio.txt

• See “Sysfs Interface for Userspace” section



31

Making Wireless

Observability – Tips and Tricks
• Logic analyzer configuration

– Use transitional storage mode
• Don’t observe unnecessary clock signals if you want to capture

for a long duration

• Test your setup before starting
– Toggle all signals manually

• Preferably one at a time, or in a pattern
• Check both high and low



32

Making Wireless

Using LEDs for debug

• Useful for initial board bringup
• Very useful to use these in bootloaders

– in case of a crash before the UART comes up
• No need for scope/LA

– Not useful for timing information
– Very useful if all you need to know is state information

• Heartbeat LEDs
– (don’t enable in production – they drain power)



33

Making Wireless

JTAG

• Examples:
– Lauterbach Power Debug
– ARM Realview ICE, ARM DS/5
– XDS560

– Flyswatter
– OpenOCD



34

Making Wireless

JTAG – tips and tricks
• Lauterbach PER files

– Decode register dumps

• The while(1) loop
– Sometimes you cannot connect with JTAG when the

CPU is powered down in idle paths
• Workaround: add a while(1) loop after CPU powers up.

Connect with JTAG here, and then skip to the next instruction

• Read/write breakpoints on variables
– Useful for debugging memory corruption



35

Making Wireless

JTAG – tips and tricks

• Console over JTAG
– CONFIG_HVC_DCC
– CONFIG_DEBUG_ICEDCC

– Introduced in kernel in which version?

• Extracting dmesg buffer over JTAG



36

Making Wireless

Basic register access utilities
• Register access

– omap_readl/writel
– readmem, devmem2
– i2c-utils



37

Making Wireless

Register decoders
• Example

– pxaregs

• Register dump scripts
– Simple userspace scripts can be built around these

utilities
– Example

• ehcidump.sh



38

Making Wireless

Register decoders
• Exporting register info in debugfs

• Example - MUSB in debugfs


