

Device Trees for ARM

Vitaly Wool, Mentor Graphics

Embedded Linux Conference 2009
Grenoble, France

What is a device tree?

 What is it?
 A tree-like data structure

 Each node is named
 Each node has a single parent node
 Each node has properties

 Standardized
 Descriptions follow IEEE 1275

 Plain text-based
 Compiled into binary form by the special tool
 Parsed by kernel code at boot time

What is a device tree for?

 What is it for?
 Aims to describe a platform

 Functional layout (CPU, Memory, ICs...)
 Configuration (kernel parameters, consoles, etc.)
 Device names

 May be supplied by firmware
 Requirement for arch/powerpc

 Also used on Sparc
 Not deployed on other architectures

 Why oh why?

Device tree example
/ {

model = "MPC8548CDS";
compatible = "MPC8548CDS", "MPC85xxCDS";

cpus {
#address-cells = <1>;
#size-cells = <0>;

PowerPC,8548@0 {
device_type = "cpu";
reg = <0x0>;
d-cache-line-size = <32>; // 32 bytes
i-cache-line-size = <32>; // 32 bytes
d-cache-size = <0x8000>; // L1, 32K
i-cache-size = <0x8000>; // L1, 32K
timebase-frequency = <0>; // 33 MHz, from uboot
bus-frequency = <0>; // 166 MHz
clock-frequency = <0>; // 825 MHz, from uboot
next-level-cache = <&L2>;

};
};

memory {
device_type = "memory";
reg = <0x0 0x8000000>; // 128M at 0x0

...

What is there for ARM nownow?

 arch/arm/tools/mach-types
 Plaintext machines' description

 Name
 CONFIG_ option
 MACH_TYPES_ subname
 Machine ID (unique number)

 Machine ID
 Passed to the kernel by firmware
 Allows to determine in run-time

 CPU type, memory size etc.
 platform_devices to add
 Initialization specifics

ARM “mach-types” drawbacks

 Adding new SoC support is overcomplicated
 New machine description
 New platform_devices list

 Even if the number of specifics is very small
 “versioned” Makefiles/Kconfigs
 Requires kernel re-compilation

 Platform data bloat
 Lengthy platform_device lists for each

board/SoC
 Duplication of data

ARM “mach-types” drawbacks
(continued)

 Too few flexibility
 No way to tell the kernel it shouldn't re-init some

devices
 Splashscreen flicker unavoidable
 Longer boot time
 “handover” handling in kernel

 ARCH_ and MACH_ mess
 Can't build a kernel supporting both i.MX31 and

OMAP2430

DTs and ARM: current status

 Multiple attempts to implement and deploy
 Each causing heated discussion
 None hitting the mainline
 Last attempt: May 2009

 Latest news
 “Holy War” May-June 2009
 Reminded of The War of The Roses

 Dynastic war, 15th century
 Yorks (white), Lancasters (red)

Wars of the trees

 Start date: Wed May 27, 2009
 Started with: Janboe Ye's LKML patch
 The Greens (Pro DT) commanders:

 Grant Likely
 David Miller
 Benjamin Herrenschmidt

 The Reds (Contra DT) commanders:
 Russell King
 Sasha Hauer
 Mark Brown

The Greens' armor
 Simplified new SoC support addition

 Might be as simple as “define a new tree”
 No re-compilation

 Flexibility
 Different initialization options

 Parallel initialization possible
 Ability to clearly specify dependencies

 Device tree validation options
 If it's invalid, fall back to default

 True multiplaform kernel
 CPU model based

 ARCH_XXX could go away

The Reds' armor

 DT's are bloated
 Additional code to parse the trees

 DT's slow down kernel bootup
 Tree parsing takes CPU cycles

 DT's don't describe some things well enough
 Complicated interconnections between devices

 Audio codec/bluetooth/GSM
 GPIO-based initializations

 Can't express the code in plain text!

So...

And there was Fight!

Battle 1: “bloat”

- DT's add 5+k overall
 ~3k drivers/of
 ~4k ARM DT support

- DT parsing is complex
 And so is Linux
 written once used many

+ DT saves ~10k/platform
 platform_devices/platform data for each platform

= Conclusion: this point is invalid.

Kernel code and DTs

DT parser
OF support
Platform data
The rest

Battle 2: boot-up time

- DT parsing adds time to bootup
 The time depends on CPU performance
 It is really marginal for modern ARM CPUs

+ DT's may be used for parallel initialization
 Easy to express depenencies
 Easy to specify “weight”

= Conclusion: this point is also irrelevant

Boot-up time and DT's

Stock kernel Device trees Device trees w/ async init

0

2

4

6

8

10

12

14

i.MX31
BeagleBoard
Android Emulator

Battle 3: flexibility

+ DT's add flexibility
 Initialization
 validation

- Too much flexibility is granted to firmware
 With mach-id, things have settled up well wrt

firmware/kernel border definition

- DT's are not flexible enough for some corner
cases

 Tighly coupled hardware (like BT+GSM+codec)
 Complicated platform-specific device init (GPIO)

= Conclusion: DT's are not ready to handle that

“Corner cases” ?

 Rare thing on
PowerPC

 Not that important for
typical PowerPC-
based systems
 Openness
 Flexibility to add

clones

 e. g. PXA is a big fat
corner case

 GPIO configuration
for most of the
devices (e. g. i.MX)
 Closedness
 Flexibility to

reconfigure the same
platform

Example:
platform_device and pin multiplexing

...
struct stmp3xxx_fb_platform_data {

char name[16];
u16 x_res;
u16 y_res;
u16 bpp;
u32 cycle_time_ns;
int lcd_type;
int (*init_panel)(); /* pins multiplexing */
void (*release_panel)(); /* pins release */

...

 How to express this using DT?
 List of pins to configure as a property
 Platform-wide function for pin configuration

 Supplied if the property is present for a device

 Still no way to express e. g. dotclock init

Battle 4: proof of concept

+ DT's are there for quite a while
 PowerPC
 OpenFirmware / OpenBIOS

- ARM is special
 Variety of ARM firmware (not standardized)
 No OpenBIOS, so no need for DT's
 ARM is mobile, so it's closed architecture
 No CompactPCI-like hotswap

- No working DT utilization example

= Conclusion: no real proof of concept for ARM

Battle 5: of_device

+ Used for PowerPC for ages
 Simple wrapper over struct device

- Doesn't convey what ARM needs
 No platform_data analog
 No resource analog

- Reworking ARM platform part for of_device is
lengthy and senseless

 And it's better to have unified approach

= Conclusion: of_device is not providing what
ARM needs

The War of Trees: results

 Local successes of the Greens
 But overall, the Reds take the victory

 Device trees are not ready for deployment on ARM

 The Greens have to better prepare for the next
battle :-)

Winning strategy for the Greens?

 Proof-of-concept for a really complicated multi-
SoC platform
 Work for PXA is ongoing

 Update the implementation
 Add GPIO descriptions

 A platform-wide function could be used as a
callack

 Get rid of of_device
 A property for “trusted” bootloaders?

 Use vendors as a reinforcement :)
 Many are interested in DT's adption for ARM

Good luck the Greens!

 With a true multiplatform kernel:
 Less effort for kernel testing

 More automation
 Better quality

 More concentration on middleware
 We have to add value there, kernel's almost done

 With DT's adopted for ARM
 Less duplication of code

 Merge of_device/platform_device versions of the
same thing

 Better firmware/kernel interworking

Peace!

Thanks for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

