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What is a device tree?

 What is it?
 A tree-like data structure

 Each node is named
 Each node has a single parent node
 Each node has properties

 Standardized
 Descriptions follow IEEE 1275

 Plain text-based
 Compiled into binary form by the special tool
 Parsed by kernel code at boot time



  

What is a device tree for?

 What is it for?
 Aims to describe a platform

 Functional layout (CPU, Memory, ICs...)
 Configuration (kernel parameters, consoles, etc.)
 Device names

 May be supplied by firmware
 Requirement for arch/powerpc

 Also used on Sparc
 Not deployed on other architectures

 Why oh why?



  

Device tree example
/ {

model = "MPC8548CDS";
compatible = "MPC8548CDS", "MPC85xxCDS";

cpus {
#address-cells = <1>;
#size-cells = <0>;

PowerPC,8548@0 {
device_type = "cpu";
reg = <0x0>;
d-cache-line-size = <32>; // 32 bytes
i-cache-line-size = <32>; // 32 bytes
d-cache-size = <0x8000>; // L1, 32K
i-cache-size = <0x8000>; // L1, 32K
timebase-frequency = <0>; //  33 MHz, from uboot
bus-frequency = <0>; // 166 MHz
clock-frequency = <0>; // 825 MHz, from uboot
next-level-cache = <&L2>;

};
};

memory {
device_type = "memory";
reg = <0x0 0x8000000>; // 128M at 0x0

...



  

What is there for ARM nownow?

 arch/arm/tools/mach-types
 Plaintext machines' description

 Name
 CONFIG_ option
 MACH_TYPES_ subname
 Machine ID (unique number)

 Machine ID
 Passed to the kernel by firmware
 Allows to determine in run-time

 CPU type, memory size etc.
 platform_devices to add
 Initialization specifics



  

ARM “mach-types” drawbacks

 Adding new SoC support is overcomplicated
 New machine description
 New platform_devices list

 Even if the number of specifics is very small
 “versioned” Makefiles/Kconfigs
 Requires kernel re-compilation

 Platform data bloat
 Lengthy platform_device lists for each 

board/SoC
 Duplication of data



  

ARM “mach-types” drawbacks
(continued)

 Too few flexibility
 No way to tell the kernel it shouldn't re-init some 

devices
 Splashscreen flicker unavoidable
 Longer boot time
 “handover” handling in kernel

 ARCH_ and MACH_ mess
 Can't build a kernel supporting both i.MX31 and 

OMAP2430



  

DTs and ARM: current status

 Multiple attempts to implement and deploy
 Each causing heated discussion
 None hitting the mainline
 Last attempt: May 2009

 Latest news
 “Holy War” May-June 2009
 Reminded of The War of The Roses

 Dynastic war, 15th century
 Yorks (white), Lancasters (red)



  

Wars of the trees

 Start date: Wed May 27, 2009
 Started with: Janboe Ye's LKML patch
  The Greens (Pro DT) commanders:

 Grant Likely
 David Miller
 Benjamin Herrenschmidt

 The Reds (Contra DT) commanders:
 Russell King
 Sasha Hauer
 Mark Brown



  

The Greens' armor
 Simplified new SoC support addition

 Might be as simple as “define a new tree”
 No re-compilation

 Flexibility
 Different initialization options

 Parallel initialization possible
 Ability to clearly specify dependencies

 Device tree validation options
 If it's invalid, fall back to default

 True multiplaform kernel
 CPU model based 

 ARCH_XXX could go away



  

The Reds' armor

 DT's are bloated
 Additional code to parse the trees

 DT's slow down kernel bootup
 Tree parsing takes CPU cycles

 DT's don't describe some things well enough
 Complicated interconnections between devices

 Audio codec/bluetooth/GSM
 GPIO-based initializations

 Can't express the code in plain text!



  

So...

And there was Fight!



  

Battle 1: “bloat”

- DT's add 5+k overall
 ~3k  drivers/of
 ~4k ARM DT support

- DT parsing is complex
 And so is Linux
 written once used many

+ DT saves ~10k/platform
 platform_devices/platform data for each platform

= Conclusion: this point is invalid.



  

Kernel code and DTs

DT parser
OF support
Platform data
The rest



  

Battle 2: boot-up time

- DT parsing adds time to bootup
 The time depends on CPU performance
 It is really marginal for modern ARM CPUs

+ DT's may be used for parallel initialization
 Easy to express depenencies
 Easy to specify “weight”

= Conclusion: this point is also irrelevant



  

Boot-up time and DT's
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Battle 3: flexibility

+ DT's add flexibility
 Initialization
 validation

- Too much flexibility is granted to firmware
 With mach-id, things have settled up well wrt 

firmware/kernel border definition

- DT's are not flexible enough for some corner 
cases

 Tighly coupled hardware (like BT+GSM+codec)
 Complicated platform-specific device init (GPIO)

= Conclusion: DT's are not ready to handle that



  

“Corner cases” ?

 Rare thing on 
PowerPC

 Not that important for 
typical PowerPC-
based systems
 Openness
 Flexibility to add 

clones

 e. g. PXA is a big fat 
corner case

 GPIO configuration 
for most of the 
devices (e. g. i.MX)
 Closedness
 Flexibility to 

reconfigure the same 
platform



  

Example: 
platform_device and pin multiplexing

...
struct stmp3xxx_fb_platform_data {

char name[16];
u16 x_res;
u16 y_res;
u16 bpp;
u32 cycle_time_ns;
int lcd_type;
int (*init_panel)(); /* pins multiplexing */
void (*release_panel)(); /* pins release */

...

 How to express this using DT?
 List of pins to configure as a property
 Platform-wide function for pin configuration

 Supplied if the property is present for a device

 Still no way to express e. g. dotclock init



  

Battle 4: proof of concept

+ DT's are there for quite a while
 PowerPC
 OpenFirmware / OpenBIOS

- ARM is special
 Variety of ARM firmware (not standardized)
 No OpenBIOS, so no need for DT's
 ARM is mobile, so it's closed architecture
 No CompactPCI-like hotswap

- No working DT utilization example 

= Conclusion: no real proof of concept for ARM



  

Battle 5: of_device

+ Used for PowerPC for ages
 Simple wrapper over struct device

- Doesn't convey what ARM needs
 No platform_data analog
 No resource analog

- Reworking ARM platform part for of_device is 
lengthy and senseless

 And it's better to have unified approach

= Conclusion: of_device is not providing what 
ARM needs



  

The War of Trees: results

 Local successes of the Greens
 But overall, the Reds take the victory

 Device trees are not ready for deployment on ARM

 The Greens have to better prepare for the next 
battle :-)



  

Winning strategy for the Greens?

 Proof-of-concept for a really complicated multi-
SoC platform
 Work for PXA is ongoing

 Update the implementation
 Add GPIO descriptions

 A platform-wide function could be used as a 
callack

 Get rid of of_device
 A property for “trusted” bootloaders?

 Use vendors as a reinforcement :)
 Many are interested in DT's adption for ARM



  

Good luck the Greens!

 With a true multiplatform kernel:
 Less effort for kernel testing

 More automation
 Better quality

 More concentration on middleware
 We have to add value there, kernel's almost done

 With DT's adopted for ARM
 Less duplication of code

 Merge of_device/platform_device versions of the 
same thing

 Better firmware/kernel interworking



  

Peace!

Thanks for your attention!
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