
Introducing resinOS

An Operating System Tailored for
Containers and Built for the Embedded
World
Andrei Gherzan / Petros Angelatos
October 2016

Andrei Gherzan
● Lead engineer of resinOS
● Maintainer of meta-raspberrypi, meta-chip

About us

Petros Angelatos
● Founder / CTO
● Ported Docker to ARM

● Mission
● History
● Architecture
● Features
● Development tools
● Future

Agenda

● Be the embedded OS of choice for containers in IoT
● Create a community around containers for IoT
● Modern security features
● Minimal footprint
● Production ready

Mission

● Started 4 years ago
● Modern devops practices to the embedded world
● Naturally leaned towards containers
● Ported Docker to ARMv6
● Ported Docker to ARMv5

○ Fixes upstreamed

History - resin.io

https://resin.io/blog/docker-on-raspberry-pi/
https://github.com/boltdb/bolt/pull/578

● Needed an OS for our platform
○ Tried a modified Arch
○ Tried a modified TinyCore

● Both had important shortcomings

History - resinOS

● Started in January 2014 as internal project
● Used Yocto as a base
● Open sourced in July 2015
● Currently under very active development
● It’s been running in production for 2.5 years

History - resinOS

Architecture

● Why we chose yocto
○ Minimal
○ Low footprint
○ Build system allows for easy patching
○ Board vendors usually supply Yocto BSP

■ Easier device support

Yocto

Yocto layer architecture

poky

meta-oe

meta-resin

resin-<board-name>

board BSP
submodules

● One repo per board
● Submodules for dependent layers

○ Tried repo tool
○ Tried monolithic repo

● Each board can move independently

https://github.com/resin-os?query=resin-

https://github.com/resin-os?query=resin-
https://github.com/resin-os?query=resin-

meta-resin

meta-resin
meta-resin-common

Jethro overlayer Fido overlayer Daisy overlayer

● Main resinOS layer
● Automatic aufs patching
● BSP independent kernel configuration
● Can prepopulate docker images
● Kernel headers for out-of-tree module development

https://github.com/resin-os/meta-resin

https://github.com/resin-os/meta-resin
https://github.com/resin-os/meta-resin

● Environment defined in a Dockerfile
○ Predictable host configuration

● Docker image artifacts
○ You can use the OS as a container
○ resin/resinos:<version>-<board>

Build system

https://github.com/resin-os/resin-yocto-scripts

https://github.com/resin-os/resin-yocto-scripts
https://github.com/resin-os/resin-yocto-scripts

● Separate rootfs and root state
○ We know exactly which services write to disk

● Dual root partition
● data partition auto-expands on first boot

Partition layout

rootA databoot rootB state

● Forced us to investigate all writes
● Configuration stored in state partition

○ Network configuration
○ Random seed
○ Clock at shutdown

● Some state is stored in tmpfs
○ DHCP leases
○ Limited logs

Read-only root

● Cleaner separation
● OTA updates are much easier
● Enables diff based updates
● We can’t leave state behind

Read-only root

● Compartmentalisation of failures
○ Device can survive data partition corruption
○ Most I/O activity happens in there

● Root partition is never written to while in use
● We strive to do atomic operations everywhere

Reliability

Runtime

ResinOS Userspace

User
Application

Language
Packages

Language
Runtime

OS packages

Base Image

Container Engine (Docker)

Linux Kernel + Kernel Modules

CONTAINER CONTAINER(S)

● Systemd
● NetworkManager
● ModemManager
● dropbear
● dnsmasq
● docker
● avahi

Ingredients

● Leverage a lot of systemd features
○ Adjusting OOM score for critical services
○ Running services in separate mount namespaces
○ Very easy dependency management
○ NTP

● Socket activation for SSH
○ Saves RAM since ssh is running only when needed

Systemd

● DNS is hard
○ dnsmasq
○ Integration of Docker with host’s dnsmasq

● NetworkManager
○ Excellent D-Bus API

● ModemManager
○ Excellent D-Bus API
○ Lots of documentation

Networking

● AUFS driver
○ Allows support for NAND based devices

● Currently on docker 1.10.3
○ Backported stability patches

● Journald logging driver
○ Avoids SD card wear

● Seccomp enabled

Docker

● All logs end up in journald
● In RAM 8MB buffer by default
● Configurable log persistence
● Journald allows for structured logs

○ Container logs are annotated with metadata
● Easy to send logs to a central location to store and

process

Log management

Features

● Some boards have internal storage
● Image for these boards is a flasher

○ Automatic copying to internal storage
○ Feedback through LEDs

Two stage flashing

● So many options
● It’s one of our biggest focus areas
● resinhup is our current approach

○ Takes advantage of dual root partition
○ Validates everything before changing the state
○ It’s still experimental

Host OS updates

https://github.com/resin-os/resinhup/

https://github.com/resin-os/resinhup/
https://github.com/resin-os/resinhup/

● Used by
○ CoreOS, ChromiumOS, Ubuntu Snappy
○ Brillo, Mender.io

● But wastes a lot of space
● We’re experimenting with more advanced approaches

○ ostree
○ docker

Dual root partition method

● Integration with docker
● It uses docker to pull the OS image

○ It then unpacks and applies it
● Leveraging important docker features

○ Signed images
○ Programmatic API for fetching
○ Open question: can unify containers and host?

ResinHUP

https://github.com/resin-os/resinhup/

https://github.com/resin-os/resinhup/
https://github.com/resin-os/resinhup/

Automatic emulated testing

● We support virtual QEMU boards
● Automated basic testing on every PR

○ Booting
○ Networking

● Integrated with our Jenkins

https://github.com/resin-io/autohat

https://github.com/resin-io/autohat
https://github.com/resin-io/autohat

Automatic hardware testing

● Manual testing doesn’t scale
○ Currently 22 boards

● We built a board that instruments boards
○ GPIO
○ Provisioning
○ SD muxing
○ Wifi testing

https://github.com/resin-io/autohat-rig

https://github.com/resin-io/autohat-rig
https://github.com/resin-io/autohat-rig

ARM64

● Coming soon

ARMv6
● RPI Zero
● RPI model 1 A+

ARMv5

● TS7700

Device support

ARMv7

● Raspberry Pi 2
● Raspberry Pi 3
● Samsung Artik 5
● SamsungArtik 10
● Beaglebone Black
● Beaglebone Green
● Beaglebone Green Wireless
● Odroid C1/C1+
● Odroid XU4
● SolidRun Hummingboard i2
● Boundary Devices Nitrogen6x
● Parallella Board
● VIA 820 board
● Zynq zc702
● TS4900 single and Quad

X86_32
● Intel Edison

X86_64
● Intel NUC

Device support

● Easy to add new boards
● Meta-resin handles

○ Userspace
○ Image generation
○ Kernel configuration

Development tools

● How do you..
○ Configure network credentials?
○ Provision a device?
○ Develop on the board?
○ Get logs?

Development tools

● Development images have
○ Open SSH server
○ Docker socket exposed over TCP
○ mDNS exposed metadata

● Device is at <hostname>.local

Development mode

● Image configuration
● Wifi credentials
● Hostname
● Persistent logging

Resin Device Toolbox

$ rdt configure ~/Downloads/resinos-dev.img
? Network SSID super_wifi
? Network Key super_secure_password
? Do you want to set advanced settings? Yes
? Device Hostname resin
? Do you want to enable persistent logging? no
Done!

● Automatically detects removable storage
● Won’t wipe your drive!
● Validates after writing

Resin Device Toolbox

$ sudo rdt flash ~/Downloads/resinos-dev.img
? Select drive /dev/disk3 (7.9 GB) - STORAGE DEVICE
? This will erase the selected drive. Are you sure? Yes
Flashing [========================] 100% eta 0s
Validating [========================] 100% eta 0s

● Docker development
● Finds device in local network
● Continously syncs code into the container
● Rebuilds when necessary

Resin Device Toolbox

$ rdt push --source .
* Building..
- Stopping and Removing any previous 'myapp' container
- Removing any existing container images for 'myapp'
- Building new 'myapp' image

● More than 500 images for each supported device type
● Debian, Fedora, Alpine
● Nodejs, python, golang, Java
● Follow docker conventions

Base Images

https://github.com/resin-io-library/base-images

https://github.com/resin-io-library/base-images
https://github.com/resin-io-library/base-images

Future

● Roadmap includes..
○ Compressed RAM
○ Docker 1.12
○ Hardware watchdog integration
○ Secure Boot
○ ramoops integration
○ ...

● We interested in your thoughts
● There is lots of room for innovation

Future

Open source

● Website - https://resinos.io/

● Github - https://github.com/resin-os

● Gitter - https://gitter.im/resin-os/chat

● Apache 2 Licence

https://resinos.io/
https://github.com/resin-os
https://gitter.im/resin-os/chat

Questions?

