Linux 802.11 Solutions for Mobile Platforms

October 16th, 2009

Samuel Ortiz <sameo@linux.intel.com>

ELCE-2009

What are we talking about?

- Mobile platforms: Phones, MIDs, tablets, PDAs.
- Linux solutions: kernel.org drivers.
- Full MAC vs Soft MAC devices.

Soft MAC 802.11 devices

- 802.11 partly done in kernel.
- 802.11 partly done in HW.
- Hardware talks 802.11.
- Smaller chips.
- Typical 802.11 design.

Full MAC 802.11 devices

- 802.11 fully done in HW.
- Hardware talks 802.11 or 802.3.
- Fat chips.
- Unusual designs.

Mobile 802.11 specific requirements

Power consumption

- Battery killer.
- Idle, associated, full speed.

Roaming

Streaming while moving around APs.

Radio coexistence

One antenna, several radios.

Throughput

- Use cases driven: WWW, VoIP, video streaming.
- More is not better.

Host and target power savings

- Host controller power savings
 - Low footprint host controllers: Serial, SPI, SDIO.
 - High speed clocks, small packet overhead.
- Target power saving
 - Target deep sleep for idle and associated modes.
 - Partial sleep while traffic is running.

802.11 power savings

- 802.11 power save mode (PSM)
 - The client initiates PSM and notifies the AP about it.
 - The AP starts buffering all frames.
 - Unicast frames: The client sends a PS-Poll frame to fetch them.
 - TIM bits in every beacon (Traffic Indication Message)
 - Broadcast frames: The AP sends them right after DTIM beacon
 - DTIM bits every N beacon (Delivery Traffic Indication Message)

802.11 power savings: Unicast case

802.11 power savings: Broadcast case

Client

802.11 power savings

- Client must wake up for every DTIM beacon.
- Client can sleep between DTIM beacons.
- Client decides when to wake up for unicast frames.
- Broken AP, broken FW: packet losses.
- Biggest power saver.

mac80211 power savings

- Only for Soft MAC devices.
- Beacon filtering
 - Firmware only forwards relevant beacons:
 - DTIM or TIM changes.
 - Host stays asleep, target wakes up.
 - Beacon losses notification.
 - Significant power savings.
- DPSM (Dynamic Power Save Mode)
 - Host and target stay awake for a while after the last TX.
 - Helps throughput, helps latencies, may help power saving.

Firmware power savings

- Need firmware support for beacon filtering and DPSM.
- Full MAC devices:
 - Scanning: Only get new scan results.
 - DTIM and beacon filtering.
 - Packet filtering: Much less traffic when idling.
- Packet aggregation
 - Keep the host awake longer, but less often.
 - Helps throughput and saves power.

Roaming

- Roaming is scanning:
 - Periodic background scanning for fast roaming.
- Roaming decision:
 - Soft MAC: All the way from HW to user space.
 - Full MAC: Can live in HW, user space notified asynchronously.
- Full MAC advantages:
 - Scanning and roaming in HW: Faster and lighter on your battery.

Radio Co-existence

- Typical use cases: WLAN/Bluetooth coexistence.
- One antenna:
 - 2 radios: Needs MAC and HW support.
 - 1 radio: Integrated MACs, needs full MAC.
- Radio broker for mac80211.

The winners

Driver	MAC	Bus	802.11 PSM	Coexistence	Roaming	Manufacturer support
iwmc3200	Full	SDIO (SPI)	Yes	Yes ¹	Yes	Yes
wl12xx	Soft	SDIO SPI	Yes	Yes ²	No ³	No
libertas	Full	SDIO SPI	Yes	No	No	No

³ Firmware can provide beacon losses and low signal events.

¹ MAC support for BT/WiFi/WiMAX coexistence.

² Firmware support for Bluetooth coexistence with 802.15.2 compliant BT modules.

The losers

- ar6k: Atheros Full MAC SDIO device
 - Atheros working on an upstream mergeable version.
 - Openmoko driver.
- P54spi (a.k.a. cx3110x): Discontinued HW.
- bcm4325: Broadcom Full MAC SPI/SDIO device
 - Some open source driver laying around.
 - Upstream hopeless.

Questions?

Questions?

- http://wireless.kernel.org/
- linux/drivers/net/wireless/iwmc3200wifi/
- linux/drivers/net/wireless/wl12xx/
- http://wireless.kernel.org/en/users/Drivers/ar6k/

