
© 2017 NTT DATA MSE Corporation

Solution Approach
in Integration of AI Engine into AGL

March 2nd, 2018

NTT DATA MSE Corporation

Hiroto Imamura

Tomonari Okuno

Japan Technical Jamboree 64

© 2018 NTT DATA MSE Corporation 2 / 35

Name Hiroto Imamura

Position Manager

Carrier - Leader of OSS Collaboration related

activities in NTT DATA MSE

- Linux-based embedded devices

- Architecture design / System debugging

/ Performance optimization / Security

Who are we?

NTT DATA MSE Corporation

Name Tomonari Okuno

Position Deputy Manager

Carrier - Lead Architect of R&D projects in NTT

DATA MSE

- Linux-based embedded devices

- Performance optimization /

OSS Licenses

© 2018 NTT DATA MSE Corporation 3 / 35

What is AGL?

Ref.

- https://www.automotivelinux.org/about

- https://www.automotivelinux.org

AUTOMOTIVE GRADE LINUX

© 2018 NTT DATA MSE Corporation 4 / 35

Cloud

Why Edge AI ?

AI Engine

So far

Near future

Edge

＋

Edge

Cloud

Data Volume

LARGE

Response

SLOW

Data Volume

SMALL

Response

FAST

AI Engine
Response

© 2018 NTT DATA MSE Corporation 5 / 35

Edge AI is spotlighted

Apr. 2017

Jun. 2017

Jun. 2017

Jul. 2017

Jul. 2017

Sep. 2017

Jan. 2018

e-AI by Renesas Electronics

Neural Network Libraries by Sony

Embedded Learning Library by Microsoft

TensorFlow Lite by Google

revision by Xilinx

Kirin 970 by HUAWEI

Deep Learning Accelerator Card by PFU

More and more Edge AI solutions have been announced

Our motivation

1. OSS / Rich development environment Easy to try

2. Few people addressed Good chance to appeal our technical capabilities

3. AGL Member Make collaboration

© 2018 NTT DATA MSE Corporation 6 / 35

Collaboration

supported by Sony members

© 2018 NTT DATA MSE Corporation 7 / 35

Feedback at CES 2018

Valuable opinions, Valuable discussions

© 2018 NTT DATA MSE Corporation 8 / 35

Technical Explanation

© 2018 NTT DATA MSE Corporation 9 / 35

Introduction

Our team have started AI related activities from October 2017
• There are AI related news almost everyday
• Our interest:

 How is the performance of AI on edge devices?
 What do we need to learn in order to realize AI on edge devices?

• First Step: Let’s use an AI engine on edge devices
• Implemented a demo system “Handwritten Digit Recognition App”

 In this presentation
• Overview of Machine Learning on edge devices
• How we implemented the “Handwritten Digit Recognition App” on AGL

© 2018 NTT DATA MSE Corporation 10 / 35

What is AI?

© 2018 NTT DATA MSE Corporation 11 / 35

AI, Machine Learning, Deep Learning …

What are the relations of these terms?

Artificial Intelligence

Machine Learning

Deep Learning
Computer programs to

simulate functions of

human’s brain such as

“cognition”, “judgement”,

etc

Technology to let

computers learn rules and

knowledge from vast

amount of various data

such as values, texts,

pictures and voice.

One of the method to perform

machine learning by using

neural network to realize high

level of abstraction by

extracting information from

multiple layers one by one.

© 2018 NTT DATA MSE Corporation 12 / 35

Types of AI

Systems which involve human created rule sets.

(e.g. Expert system)
Rule-Based

Machine

Learning

Supervised

Learning

Unsupervised

Learning

Reinforcement

Learning

Systems which learn from given labeled training

data(=Answers are given from a teacher).

(e.g. Voice/Image Recognition, Stock Price

Prediction)

Systems which learn from given unlabeled

training data(=Answers are not given).

(e.g. Automatic data classification, Anomaly

detection）

Systems which learn in an environment where

only the final result evaluations are given.

(e.g. AI-Shogi, AI-Go）

Decision rules

are derived from

data analysis.

Decision rules

are described by

human.

© 2018 NTT DATA MSE Corporation 13 / 35

Machine Learning (Supervised learning)

Training

Prediction

Trained

Model

Machine Learning

System

Training

Input (Training Data)

Apple

Apple

Machine Learning

System

Inference

Unknown Data

Output

Apple

Tomato

Cherry

95%
4%
1%

© 2018 NTT DATA MSE Corporation 14 / 35

Demo System:

Handwritten Digit Recognition App

© 2018 NTT DATA MSE Corporation 15 / 35

System Overview

AGL: EE 5.0.0

NNabla: v0.9.6

OpenCV: v3.2

 Recognizes handwritten digits from an image captured

with an USB Camera
 Deployed a pre-trained model to an edge device

Software version

Prediction

USB

Camera
AI engine

NNabla

Application

OpenCV

Trained

Model

R-Car H3

Prediction on edge deviceDeep learning on a PC

Training

MNIST

internet

Learning

tool

Trained

Model

…

…

© 2018 NTT DATA MSE Corporation 16 / 35

Application GUI

USB Camera image

Recognized Area
(100 x 100 pixels)

Cropped image
(100 x 100 pixels)

Input image

to AI Engine
(28 x 28 pixels)

Prediction result

from AI Engine
(Probability of each digit)

Recognized digit

© 2018 NTT DATA MSE Corporation 17 / 35

Neural Network Libraries (NNabla)

Neural Network Libraries

Neural Network Console

https://nnabla.org

https://dl.sony.com

• Deep learning framework.

• Intended to be used for research, development

and production.

• Aim to have it running everywhere.

Deployable to embedded devices.

• Apache License 2.0

• GUI tool for designing neural networks

intuitively.

• Many useful functions to support research and

development.

• Trained model can be embedded by using

Neural Network Libraries.

© 2018 NTT DATA MSE Corporation 18 / 35

Details of the Implementation

Step1: Deep Learning on PC

Step2: Building / Installation

Step3: Enabling USB webcam

Step4: Installation of the OpenCV

Step5: App Implementation

Only for DD

Only for DD

Step3 and 4 are not needed if AGL version is 5.0(EE)

© 2018 NTT DATA MSE Corporation 19 / 35

Step1: Deep Learning on PC

Used one of the examples available at the github
 mnist-collection/classification.py
• Downloads and uses MNIST Dataset as training data

(60,000 samples of handwritten digits image and label)

• Uses Convolutional Neural Network
• Input: 28 x 28 pixels grayscale image
• Output: Prediction of 10-way classification

…

0 1 2 3 4

5 6 7 8 9

Input Value Output Value
Image 28 x 28 Probability of each digit

Input

(28x28)

Digit Probability

(10)

Coordinate (0, 0)

(1, 0)

(2, 0)

(27, 27)

X0

X1

X2

X783

Y0

Y1

Y2

Y9

Probability of 0

Probability of 1

Probability of 2

Probability of 9

… … … …

…

© 2018 NTT DATA MSE Corporation 20 / 35

Step1: Deep Learning on PC

$ pip install nnabla

Start training

$ cd nnabla-examples/mnist-collection

$ python classification.py

2018-01-30 19:42:37,932 [nnabla][INFO]: Initializing CPU extension...

.....

2018-01-30 19:42:38,437 [nnabla][INFO]: Using DataIterator

2018-01-30 19:42:39,343 [nnabla][INFO]: iter=9 {Training loss}=2.30425691605

2018-01-30 19:42:39,343 [nnabla][INFO]: iter=9 {Training error}=0.8375

.....

2018-01-30 19:53:18,056 [nnabla][INFO]: Parameter save (.h5): tmp.monitor/lenet_params_010000.h5

Used one of the examples available at the github
 mnist-collection/classification.py

Obtain the “mnist-collection”
$ cd ~/work/sony/

$ git clone https://github.com/sony/nnabla-examples

Install the NNabla on a PC

Start

Complete

Obtain examples

© 2018 NTT DATA MSE Corporation 21 / 35

Step2: Building / Installation

Build NNabla for R-Car H3(ARMv8(64bit))

$ git clone https://github.com/sony/nnabla

$ source /opt/poky-agl/5.0.0/environment-setup-aarch64-agl-linux

$ mkdir -p nnabla/build && cd nnabla/build

$ cmake .. -DBUILD_CPP_UTILS=ON -DBUILD_PYTHON_PACKAGE=OFF

$ make

$ ls -l lib/

-rwxrwxr-x 1 nttdmse nttdmse 191170296 12月 20 06:21 libnnabla.so

-rwxrwxr-x 1 nttdmse nttdmse 25392344 12月 20 06:21 libnnabla_utils.so

Install cross SDK on a PC (AGL R-Car ARMv8 toolchain)

Build NNabla for R-Car

See also:

https://nnabla.readthedocs.io/en/latest/cpp/installation.html

See also:

http://docs.automotivelinux.org/docs/getting_started/en/dev/reference/source-code.html

Obtain source code

Setup environment

Build

$ wget https://download.automotivelinux.org/AGL/release/eel/5.0.0/m3ulcb-nogfx/deploy/sdk/poky-agl-glibc-x86_64-agl-image-ivi-

crosssdk-aarch64-toolchain-5.0.0.sh

$ chmod a+x poky-agl-glibc-x86_64-agl-image-ivi-crosssdk-aarch64-toolchain-5.0.0.sh

$./poky-agl-glibc-x86_64-agl-image-ivi-crosssdk-aarch64-toolchain-5.0.0.sh

© 2018 NTT DATA MSE Corporation 22 / 35

Step2: Building / Installation

Install the built shared libraries of the NNabla and the pre-

trained model to the target filesystem.

Shared libraries of the NNabla

$ export SDCARD=/tmp/agl

$ sudo mount /dev/sdc1 $SDCARD

$ sudo cp libnnabla.so $SDCARD/usr/lib/

$ sudo cp libnnabla_utils.so $SDCARD/usr/lib/

$ cd ~/work/sony/nnabla/examples/cpp/mnist_runtime

$ NNABLA_EXAMPLES_ROOT=~/work/sony/nnabla-examples python save_nnp_classification.py

$ ls -l lenet_010000.nnp

-rw-rw-r-- 1 nttdmse nttdmse 86920 1月 29 19:16 lenet_010000.nnp

$ sudo cp lenet_010000.nnp $SDCARD/home/data/

$ sync

$ sudo umount $SDCARD

Pre-trained model

Convert to NNabla

file format (NNP)

Copy

Copy

© 2018 NTT DATA MSE Corporation 23 / 35

Step3: Enabling USB webcam

Enable the USB Video Class in order to use USB webcam

on R-Car H3.

Enable the UVC (USB Video class) of kernel config

$ export MACHINE=h3ulcb

$ source meta-agl/scripts/aglsetup.sh -m $MACHINE -b build-renesas-kernel agl-devel agl-demo agl-netboot agl-appfw-smack

agl-localdev

$ bitbake virtual/kernel

$ bitbake linux-renesas –c menuconfig

Device Drivers --> Multimedia support ---> [*] Media USB Adapters

[*] USB Video Class (UVC)

[*] UVC input events device support (NEW)

$ bitbake virtual/kernel

$ sudo cp tmp/deploy/images/m3ulcb/Image--4.9.0+git0+098ccf1c9b-r1-m3ulcb-20171116044641.bin SDCARD/boot/Image-4.9.0-

yocto-standard

Update kernel image

Setup environment

Build Kernel

Change kernel

configuration

Rebuild kernel

Only for DD

© 2018 NTT DATA MSE Corporation 24 / 35

Step4: Installation of the OpenCV

Install the OpenCV to handle camera images
• OpenCV = Open Source Computer Vision Library

• Used for obtaining image from the webcam and pre-process the acquired images

before passing them to the NNabla.

Build the OpenCV

$ export MACHINE=h3ulcb

$ source meta-agl/scripts/aglsetup.sh -m $MACHINE -b build-opencv agl-devel agl-demo agl-netboot agl-appfw-smack agl-

localde

$ bitbake opencv

$ sudo cp -a ./tmp/work/aarch64-agl-linux/opencv/3.2+gitAUTOINC+70bbf17b13-r0/image/* $SDCARD/

$ sudo cp -a ./tmp/work/aarch64-agl-linux/v4l-utils/1.12.3-r0/image/* $SDCARD/

$ sudo cp -a ./tmp/work/aarch64-agl-linux/libwebp/0.6.0-r0/image/* $SDCARD/

$ sync; sudo umount $SDCARD

Install built binaries to target filesystem

Setup environment

Build

Copy binaries

Only for DD

© 2018 NTT DATA MSE Corporation 25 / 35

Step5: App Implementation

USB

Camera
(1) Capture image

(2) Crop image (100 x 100 pix)

(3) Convert to gray scale image

Pre-trained

Model(5) Resize image (100 x 100  28 x 28 pix)

NNabla(6) Perform inference

Result(7) Update HMI

(4) Convert to binary image

App main logic

© 2018 NTT DATA MSE Corporation 26 / 35

Step5: App Implementation(Source Code)

// (0) Open Device

cv::VideoCapture cap("/dev/video22", cv::CAP_V4L2); // videoN: Set according to the environment. This is R-Car H3 with AGL5.0.0.

// (1) Capture image

cv::Mat frame;

cap >> frame;

// Pre-process image

// (2) Crop video image [100x100pix]

cv::Rect rect(GET_VIEW_SIZE_LEFT, GET_VIEW_SIZE_TOP, GET_VIEW_SIZE_WIDTH, GET_VIEW_SIZE_HEIGHT);

cv::Mat rectImg(frame, rect);

// (3) Convert to gray scale image

cv::Mat grayImg;

cv::cvtColor(rectImg, grayImg, CV_RGB2GRAY);

// (4) Convert to binary image (Invert | Threshold = 127)

cv::Mat binImg;

cv::threshold(grayImg, binImg, 127, 255, cv::THRESH_BINARY_INV);

// (5) Resize image [100x100pix -> 28x28pix]

cv::Mat resizeImg;

cv::resize(binImg, resizeImg, cv::Size(), PGM_WIDTH/grayImg.cols ,PGM_HEIGHT/grayImg.rows);

// Add pgm header

pgmformat((char *)"cap.pgm",resizeImg);

// (6) Perform inference

int prediction = 0;

float score[10] = {};

double elapsed = 0;

const std::string nnp_filepath[] = "/home/data/lenet_010000.nnp";

const std::string pgmImageName[] = "cap.pgm";

prediction = EdgeAiNNblaMnistRuntime(pgmImageName, nnp_filepath, score, &elapsed); // nnabla wrapper API

© 2018 NTT DATA MSE Corporation 27 / 35

Experiment Result

© 2018 NTT DATA MSE Corporation 28 / 35

Recognition Result (First Try)

Recognized Not Recognized

Shifted Rotated

Not possible to recognize digits for the following patterns

Scaled

© 2018 NTT DATA MSE Corporation 29 / 35

Recognition Result (After improvement)

 Used Data Augmentation to improve pre-trained model
• Randomly alters the MNIST digit images when perform training.

 scaling, rotation, aspect ratio, distorting, brightness, contrast, add noise

• Updated the pre-trained model on the device.

• Recognition rate has been improved.

 Tested with 1,000 cases. (Handwritten digits by our colleague)

 Counted as “Recognized” if the probability is larger than 50%

 Improvement of predictions are possible by updating pre-

trained models
• Delivering up-to-date pre-trained models to devices can provide more accurate

prediction results for users.

86.0%
(860/1,000)

Before

94.8%
(948/1,000)

After

© 2018 NTT DATA MSE Corporation 30 / 35

Performance

Processing Time

8 ms
Image capture  Pre-proccesing

2 ms
Inference

Resource Usage

Item Value

1 CPU usage rate 55 %

2
Memory [RSS] usage 80 MB

Size of the Pre-trained Model 85 KB

*Measured on R-Car H3

*Measured on R-Car H3

© 2018 NTT DATA MSE Corporation 31 / 35

Conclusion

© 2018 NTT DATA MSE Corporation 32 / 35

Summary

 Explained how we implemented the Handwritten Digit

Recognition App
• Performed deep learning on a PC
• Deployed pre-trained model to R-Car H3 board
• Variation of training data set affects inference results
• Updating of pre-trained model can improve inference results

 It wasn’t difficult than expected to take the first step

toward using AI engine on AGL
• Implemented the app in 3 weeks
• Please try it!

© 2018 NTT DATA MSE Corporation 33 / 35

Next Step
1. Use other types of data for deep learning

• Create own neural network architecture
• Use information other than image available in vehicle

2. Performance improvement
• More complicated neural network architecture causes performance issues
• Utilize GPU to accelerate calculations

Summary

Improvement of autonomous
driving technology

Edge AI

signal

sign

person

rain

Detect driver's drowsiness

ＺＺＺ…

Trained

Model

Edge AI

Use various information of
embedded devices

SensorCAN

Camera

Edge AI

In edge

Trained

Model

Monitoring
- system
- driving
- security

threats

Future use-cases

© 2018 NTT DATA MSE Corporation 34 / 35

Drowsiness Detection

Drowsiness Detection Algorithm

Based on Heart Rate Variability

Trial on-going:
Replace the algorithm with AI

Data setElectrocardiac
information

Trained

Model

• Training data

• Validation data

Prepare vital data Create data set Training

Acquire

Electrocardiac

information

Transmitter

Smartphone

App behavior

<Awake> <Drowsiness detected>

Transition

Awake

Drowsiness
increasing

Drowsiness
detected

Notify with
sound/
vibration

Hitoe

© 2018 NTT DATA MSE Corporation 35 / 35

Questions?

© 2018 NTT DATA MSE Corporation 36 / 35

Thank you very much!!

© 2018 NTT DATA MSE Corporation

