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UEFI is a set of standards for firmware

● UEFI defines how firmware should behave and how services are provided to 
applications

● UEFI is not an implementation

● Tianocore/EDK2 is the reference UEFI implementation

● U-Boot also implements UEFI
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UEFI simplifies development and deployment of embedded 
Linux systems

● “Every platform is different” -- a common complaint from embedded developers

●  Behaviour is defined for common boot scenarios

– i.e. How to find and boot an OS from a block storage device is part of the spec

– Distro boot was the first step down this path

– Adopting UEFI means the embedded and server boot flows are identical

● APIs are defined

– Pre-boot code and OS loaders are portable

● OS Distros don’t needs separate images for each and every platform

● End user doesn’t need to know device specific details (i.e. Flash partition allocations)
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UEFI defines an executable format and API for pre-boot 
applications

● PE-COFF binaries

● Standard API providing services to UEFI applications

– Environment Variables

– Storage and Filesystem services

– Network services with IP stack and iPXE

● Applications are portable and don’t need any knowledge of hardware

● Applications can run as bare metal applications, or load an OS that takes over the 
system
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UEFI also defines an API for runtime services

● UEFI provides OS with a small library of hooks for access to services at runtime

● Runtime Services remain available after OS calls ExitBootServices()

● Primarily used to access and modify UEFI variables to control boot flow
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U-Boot UEFI is in active development and maturing fast

● Both OpenSUSE and Fedora use U-Boot UEFI to boot Arm SBC

– 32-bit and 64-bit

● EBBR provides specific UEFI requirements that are tailored for embedded

● Can be enabled on most U-Boot targets

● Runtime services implemented, but mostly empty stubs
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Demo

● OpenSUSE Tumbleweed generic image

● Mainline QEMU

● U-Boot compiled from mainline yesterday

$ qemu-system-aarch64
    -machine virt 
    -cpu cortex-a57
    -nographic
    -m 256
    -bios u-boot.bin
    -drive if=none,format=raw,file=openSUSE-Tumbleweed-ARM-JeOS-
efi.aarch64-2019.07.31-Snapshot20190814.raw,id=hd0
    -device virtio-blk-device,drive=hd0



8 © 2019 Arm Limited

UEFI Secure Boot is an extension that verifies application 
code is signed before execution

● Applications must be signed

● Hierarchal verification model for delegating trust

● Only addresses the firmware→OS boundary

– Presumes prior boot steps are anchored to a HW root of trust

– Presumes UEFI application will verify anything it loads
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UEFI Secure Boot adds concept of secure variables

● Secure variables are protected from modification, deletion and rollback

● Updates to secure variables must be signed with the appropriate key

● Most important secure variables

– Platform Key (PK): Used to verify PE

– Key Exchange Key (KEK): Database of keys used to verify DB/DBX changes

– db: Database of signatures and keys used to verify applications

– Dbx: Blacklist database of keys and signatures
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UEFI Variable semantics don’t match U-Boot’s

● Currently UEFI variables are stored as U-Boot variables

● U-Boot bulk stores all variables on ‘saveenv’ cmd

● UEFI defines muliple semantics

– Volatile vs. non-volatile: volatile variables are never stored

– Secure variables: Updates much be validated against PK/KEK

– Runtime vs. Boottime: Only runtime variables are exposed after ExitBootServices()

● No clear solution yet

– Active discussion on mailing list

– Current patches too invasive

– Need to extend U-Boot variable system to provide correct behavior
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Vast majority of Secure Boot can be implemented in U-Boot 
proper

● Secure variable updates can be tested against PK/KEK before applying

● No secrets stored on device

● Secure variables can be stored in regular storage

● U-Boot can verify PK/KEK/db/dbx in normal world at bootup
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Unless you care about rollback protection

● What if attacker can clear storage device?

● What if attacker can install older, vulnerable, version of variables?

● What if attacker can interfere with storage operations (drop, reorder, or insert 
transactions)

● Once out of U-Boot, OS can do whatever it wants

– A compromised OS can be used to attack firmware data
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A Trusted Execution Environment can reduce the attack 
surface against firmware data

● Delegate secure variable storage to a TEE application

● Requires backend changes to U-Boot variable storage

● Trusted Application provides an API for get/set variable at both firmware and OS time

● Internals of variable storage service inaccessible to OS
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Proposed AArch64 secure variable architecture using 
Trusted Firmware and OP-TEE
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Work is still required for UEFI Secure Boot to land in 
mainline

● Regular UEFI in good shape – Use it!

● Takahiro Akashi has prototype secure boot patches

– Haven’t been published publicly recently

– Still some debate going on over architecture

– Should image verification happen in the trusted application?

● Variable architecture and RSA implementation has taken precedence

– Should UEFI variables be integrated in to U-Boot variable service, or be completely separate?

● Linaro LEDGE working on OP-TEE w/ StandaloneMM back end

– U-Boot driver to communicate with StMM 

– StMM running under OP-TEE
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Questions?
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