+ +

Grant Likely
23 Aug 2019

UEFI is a set of standards for firmware

o UEFI defines how firmware should behave and how services are provided to
applications

e UEFI is not an implementation
o Tianocore/EDK2 is the reference UEFI implementation

e U-Boot also implements UEFI

2 © 2019 Arm Limited q rI I I

UEFI simplifies development and deployment of embedded
Linux systems

o “Every platform is different” -- a common complaint from embedded developers

Behaviour is defined for common boot scenarios

— i.e. How to find and boot an OS from a block storage device is part of the spec
— Distro boot was the first step down this path
— Adopting UEFI means the embedded and server boot flows are identical
APIs are defined
— Pre-boot code and OS loaders are portable

OS Distros don’t needs separate images for each and every platform

End user doesn’t need to know device specific details (i.e. Flash partition allocations)

3 © 2019 Arm Limited q rI I I

UEFI defines an executable format and API for pre-boot
applications

e PE-COFF binaries
e Standard API providing services to UEF| applications

— Environment Variables
— Storage and Filesystem services

— Network services with IP stack and iPXE

e Applications are portable and don’t need any knowledge of hardware

e Applications can run as bare metal applications, or load an OS that takes over the
system

4 © 2019 Arm Limited q rl I I

UEFI also defines an API for runtime services

e UEFI provides OS with a small library of hooks for access to services at runtime
e Runtime Services remain available after OS calls ExitBootServices()

e Primarily used to access and modify UEFI variables to control boot flow

5 © 2019 Arm Limited q rl I I

U-Boot UEFI is in active development and maturing fast

Both OpenSUSE and Fedora use U-Boot UEFI to boot Arm SBC
-~ 32-bit and 64-bit

EBBR provides specific UEFI requirements that are tailored for embedded

Can be enabled on most U-Boot targets

Runtime services implemented, but mostly empty stubs

6 © 2019 Arm Limited q rl I I

Demo

e OpenSUSE Tumbleweed generic image
e Mainline QEMU

e U-Boot compiled from mainline yesterday

$ gemu-system-aarch64

-machine virt

-Cpu cortex-ab5/

-nographic

-m 256

-bios u-boot.bin

-drive if=none,format=raw,file=openSUSE-Tumbleweed-ARM-JeO0S-
efi.aarch64-2019.07.31-Snapshot20190814.raw, id=hd0

-device virtio-blk-device,drive=hd0

7 © 2019 Arm Limited q rI I I

UEFI Secure Boot is an extension that verifies application
code is sighed before execution

e Applications must be signed
e Hierarchal verification model for delegating trust

e Only addresses the firmware—0S boundary

— Presumes prior boot steps are anchored to a HW root of trust

— Presumes UEFI application will verify anything it loads

8 © 2019 Arm Limited q rl I I

UEFI Secure Boot adds concept of secure variables

e Secure variables are protected from modification, deletion and rollback
e Updates to secure variables must be signed with the appropriate key

e Most important secure variables

— Platform Key (PK): Used to verify PE
— Key Exchange Key (KEK): Database of keys used to verify DB/DBX changes
— db: Database of signatures and keys used to verify applications

— Dbx: Blacklist database of keys and signatures

9 © 2019 Arm Limited q rI I I

UEFI Variable semantics don’t match U-Boot’s

Currently UEFI variables are stored as U-Boot variables

U-Boot bulk stores all variables on ‘saveenv’ cmd

UEFI defines muliple semantics
— Volatile vs. non-volatile: volatile variables are never stored
— Secure variables: Updates much be validated against PK/KEK

— Runtime vs. Boottime: Only runtime variables are exposed after ExitBootServices()

No clear solution yet

— Active discussion on mailing list
— Current patches too invasive

— Need to extend U-Boot variable system to provide correct behavior

10 © 2019 Arm Limited q rI I I

Vast majority of Secure Boot can be implemented in U-Boot
proper

e Secure variable updates can be tested against PK/KEK before applying
e No secrets stored on device
e Secure variables can be stored in regular storage

e U-Boot can verify PK/KEK/db/dbx in normal world at bootup

11 © 2019 Arm Limited q rI I I

Unless you care about rollback protection

« What if attacker can clear storage device?
o« What if attacker can install older, vulnerable, version of variables?

« What if attacker can interfere with storage operations (drop, reorder, or insert
transactions)

e Once out of U-Boot, OS can do whatever it wants

— A compromised OS can be used to attack firmware data

12 © 2019 Arm Limited q rI I I

A Trusted Execution Environment can reduce the attack
surface against firmware data

e Delegate secure variable storage to a TEE application
e Requires backend changes to U-Boot variable storage
e Trusted Application provides an API for get/set variable at both firmware and OS time

e Internals of variable storage service inaccessible to OS

13 © 2019 Arm Limited q rI I I

Proposed AArché4 secure variable architecture using
Trusted Firmware and OP-TEE

Normal World Secure World
ELO SELO]
ELL : SELl}

EL3 ;
14 © 2019 Arm Lim'

.

arm

Work is still required for UEFI Secure Boot to land in
mainline

Regular UEFI in good shape - Use it!

Takahiro Akashi has prototype secure boot patches

— Haven'’t been published publicly recently
— Still some debate going on over architecture

— Should image verification happen in the trusted application?

Variable architecture and RSA implementation has taken precedence

— Should UEFI variables be integrated in to U-Boot variable service, or be completely separate?

Linaro LEDGE working on OP-TEE w/ StandaloneMM back end

— U-Boot driver to communicate with StMM

— StMM running under OP-TEE

15 © 2019 Arm Limited q rI I I

Questions?

16 © 2019 Arm Limited q rI I I

	Mali OSS Update
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

