
Grant Likely
23 Aug 2019

UEFI Secure Boot
on U-Boot

2 © 2019 Arm Limited

UEFI is a set of standards for firmware

● UEFI defines how firmware should behave and how services are provided to
applications

● UEFI is not an implementation

● Tianocore/EDK2 is the reference UEFI implementation

● U-Boot also implements UEFI

3 © 2019 Arm Limited

UEFI simplifies development and deployment of embedded
Linux systems

● “Every platform is different” -- a common complaint from embedded developers

● Behaviour is defined for common boot scenarios

– i.e. How to find and boot an OS from a block storage device is part of the spec

– Distro boot was the first step down this path

– Adopting UEFI means the embedded and server boot flows are identical

● APIs are defined

– Pre-boot code and OS loaders are portable

● OS Distros don’t needs separate images for each and every platform

● End user doesn’t need to know device specific details (i.e. Flash partition allocations)

4 © 2019 Arm Limited

UEFI defines an executable format and API for pre-boot
applications

● PE-COFF binaries

● Standard API providing services to UEFI applications

– Environment Variables

– Storage and Filesystem services

– Network services with IP stack and iPXE

● Applications are portable and don’t need any knowledge of hardware

● Applications can run as bare metal applications, or load an OS that takes over the
system

5 © 2019 Arm Limited

UEFI also defines an API for runtime services

● UEFI provides OS with a small library of hooks for access to services at runtime

● Runtime Services remain available after OS calls ExitBootServices()

● Primarily used to access and modify UEFI variables to control boot flow

6 © 2019 Arm Limited

U-Boot UEFI is in active development and maturing fast

● Both OpenSUSE and Fedora use U-Boot UEFI to boot Arm SBC

– 32-bit and 64-bit

● EBBR provides specific UEFI requirements that are tailored for embedded

● Can be enabled on most U-Boot targets

● Runtime services implemented, but mostly empty stubs

7 © 2019 Arm Limited

Demo

● OpenSUSE Tumbleweed generic image

● Mainline QEMU

● U-Boot compiled from mainline yesterday

$ qemu-system-aarch64
 -machine virt
 -cpu cortex-a57
 -nographic
 -m 256
 -bios u-boot.bin
 -drive if=none,format=raw,file=openSUSE-Tumbleweed-ARM-JeOS-
efi.aarch64-2019.07.31-Snapshot20190814.raw,id=hd0
 -device virtio-blk-device,drive=hd0

8 © 2019 Arm Limited

UEFI Secure Boot is an extension that verifies application
code is signed before execution

● Applications must be signed

● Hierarchal verification model for delegating trust

● Only addresses the firmware→OS boundary

– Presumes prior boot steps are anchored to a HW root of trust

– Presumes UEFI application will verify anything it loads

9 © 2019 Arm Limited

UEFI Secure Boot adds concept of secure variables

● Secure variables are protected from modification, deletion and rollback

● Updates to secure variables must be signed with the appropriate key

● Most important secure variables

– Platform Key (PK): Used to verify PE

– Key Exchange Key (KEK): Database of keys used to verify DB/DBX changes

– db: Database of signatures and keys used to verify applications

– Dbx: Blacklist database of keys and signatures

10 © 2019 Arm Limited

UEFI Variable semantics don’t match U-Boot’s

● Currently UEFI variables are stored as U-Boot variables

● U-Boot bulk stores all variables on ‘saveenv’ cmd

● UEFI defines muliple semantics

– Volatile vs. non-volatile: volatile variables are never stored

– Secure variables: Updates much be validated against PK/KEK

– Runtime vs. Boottime: Only runtime variables are exposed after ExitBootServices()

● No clear solution yet

– Active discussion on mailing list

– Current patches too invasive

– Need to extend U-Boot variable system to provide correct behavior

11 © 2019 Arm Limited

Vast majority of Secure Boot can be implemented in U-Boot
proper

● Secure variable updates can be tested against PK/KEK before applying

● No secrets stored on device

● Secure variables can be stored in regular storage

● U-Boot can verify PK/KEK/db/dbx in normal world at bootup

12 © 2019 Arm Limited

Unless you care about rollback protection

● What if attacker can clear storage device?

● What if attacker can install older, vulnerable, version of variables?

● What if attacker can interfere with storage operations (drop, reorder, or insert
transactions)

● Once out of U-Boot, OS can do whatever it wants

– A compromised OS can be used to attack firmware data

13 © 2019 Arm Limited

A Trusted Execution Environment can reduce the attack
surface against firmware data

● Delegate secure variable storage to a TEE application

● Requires backend changes to U-Boot variable storage

● Trusted Application provides an API for get/set variable at both firmware and OS time

● Internals of variable storage service inaccessible to OS

14 © 2019 Arm Limited

Proposed AArch64 secure variable architecture using
Trusted Firmware and OP-TEE

EL3

EL2

EL1

EL0

SEL1

SEL0

Trusted Firmware - A

OP-TEE

StandaloneMM

U-Boot Linux

Secure Flash
(no normal world access)

RPMB on eMMC
(via supplicant)

Normal World Secure World

15 © 2019 Arm Limited

Work is still required for UEFI Secure Boot to land in
mainline

● Regular UEFI in good shape – Use it!

● Takahiro Akashi has prototype secure boot patches

– Haven’t been published publicly recently

– Still some debate going on over architecture

– Should image verification happen in the trusted application?

● Variable architecture and RSA implementation has taken precedence

– Should UEFI variables be integrated in to U-Boot variable service, or be completely separate?

● Linaro LEDGE working on OP-TEE w/ StandaloneMM back end

– U-Boot driver to communicate with StMM

– StMM running under OP-TEE

16 © 2019 Arm Limited

Questions?

	Mali OSS Update
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

