

Debugging and
profiling embedded
Linux/CRIS systems

with QEMU

Edgar E. Iglesias <edgar@axis.com>

mailto:edgar@axis.com

● Why
● CRIS & ETRAX

● Quick overview
● QEMU

● Overview
● Debugging & Profiling features

● Summary
● Questions

Talk

● We didnt have an emulator
● Fast
● Easy to use and extend
● Powerful debug capabilities

● QEMU - fun hobby project

Why

CRIS

● Code Reduced Instruction Set
● ISA designed for small footprint.
● GNU toolchain (binutils, GCC, GDB).

● CRISv8 (1999)
● Designed to be small and for low power

consumption.
● 2-stage pipeline @ 100Mhz.
● uClinux (no MMU).

● CRISv10 (2000)
● Standard Linux (with MMU).

● CRISv32 (2004)
● 5-stage pipeline @ 200Mhz.

CRIS

● Code Reduced Instruction Set
● ISA designed for small footprint.
● GNU toolchain (binutils, GCC, GDB).

● CRISv8 (1999)
● Designed to be small and for low power

consumption.
● 2-stage pipeline @ 100Mhz.
● uClinux (no MMU).

● CRISv10 (2000)
● Standard Linux (with MMU).

● CRISv32 (2004)
● 5-stage pipeline @ 200Mhz.

CRISv32

● 32-bit RISC architecture
● Variable length (16bit) insn encoding.

● 5-stage pipeline
● Load+operate
● Enforces dependencies by interlocks.

● 2-stage Multiplier shares stage with MEM
● Auto-increment has no regforwarding
● load/store multiples lack regforwarding

● Delayed branches
● MMU / TLB

● 16 segments (linear or 8Kb paged).
● 8-bit ASID, 64 entries.

● L1 Cache
● 2 x 16Kb 2way VIPT.
● Coherent (buggy).

● No performance counters

ETRAX

● Ethernet Token Ring AXis
● Family of networking chips
● Lot's of I/O

● SCSI, IDE
● Ethernet, TokenRing
● USB, Parallel ports, Serial ports
● Etc..

● Print Servers, Storage Servers, Scan Servers,
Network Cameras, Network Video Servers etc.

● ARTPEC
● AXIS family of video processing chips.

AXIS Communications

● Video surveillance
● Cameras, Video encoders, Decoders, SW etc

● Early with embedded linux

“QEMU is a generic
and open source

machine emulator
and virtualizer.”

“QEMU is a generic
and open source

machine emulator
and virtualizer.”

● System emulation
● Emulates a complete machine.
● Cross run unmodified OS/Firmware.
● Can also emulate boot-roms including

different bootstrap methods.
● Linux-user emulation

● Emulates the target processor.
● Cross run linux programs.
● Syscalls run natively on the host

(through an argument translator).

QEMU

● System emulation
● Emulates a complete machine.
● Cross run unmodified OS/Firmware.
● Can also emulato boot-rooms and

including different bootstrap methods.
● Linux-user emulation

● Emulates the target processor.
● Cross run linux programs.
● Syscalls run natively on the host

(through an argument translator).

QEMU

Does not continously interpret
guest ISA. Instead it translates
guest machine code into host

code.
● Fetching only done at translation time.
● Instruction decoding only done at translation
time.
● Basic optimization at translation time.
● Lazy Condition Code flags evaluation.

QEMU

● On demand translation of instruction sequences
from target to host ISA. The result is refered as a
Translation Block.

● Translation is done through a portable intermediate
generic code generator, Tiny Code Generator (TCG).

Dynamic Translation

● Per CPU target translators translate guest
code into TCG operations.

● TCG runs generic optimization passes.
● Basic stuff, Regalloc, liveness analysis etc.

● TCG backends emit host machine code.

Tiny Code Generator

CRIS
Translator

 TCG
Generic

Optimizer

TCG
Backend

CRIS:
move.d $r9, $r10
ret
addq 3, $r10
...

TCG:
mov_i32 $r10, $r9
movi_i32 cc_x, $0x0
mov_i32 cc_result, $r10

mov_i32 btarget, $srp
movi_i32 tmp0, $0xfffffffe
and_i32 btarget, btarget, tmp0
movi_i32 btaken, $0x1
...

TCG x86 backend:
mov 0x24(%ebp), %eax
mov 0x6c(%ebp), %edx
...

Translation

● Subroutine calls from TB
● TCG needs to writeback and reload the

CPUState around the call due to aliasing
and helper side-effects.

● PURE | CONST helpers avoid wb &
reloading.

● Nice if you can easily identify a complex
target instruction sequence.

● Compiled by host compiler
● Optimization cost mostly taken at QEMU

compile time.

TCG Helpers

● CRIS has implicit updates
● Emulators need to evaluate the condition

code flags after every insn.

● Lazy evaluation
● Save operation and operands.
● Evauate when there is a dependency to

the flags.

Lazy CC evalutions

● Target ports (TCG translators):
● Alpha, ARM, CRIS, MIPS, m68k, PPC, SH,

SPARC32/64, x86 and x86_64.

● Host ports (TCG backends):
● ARM, HPPA, PPC, SPARC32, x86 and

x86_64.

QEMU TCG

● Memory accesses
● No cache models.
● No bus transfer models.
● Limited bus topology modeling.

● SoftMMU
● QEMU fast TLB caches slower guest TLB.
● I faults taken between TB's.
● D faults abort and retranslate the current

TB with extra info to find the actual guest
insn that caused the exception.

● Interrupts
● Taken between TB's.

QEMU IO

● Interrupt controllers
● DMA units
● Flash memories (NOR/NAND)
● Networking

● Flexible ways to connect to the host.
● Support for DMA and PHY control.

● IDE / SCSI controllers
● Serial ports
● Graphic adapters
● Audio adapters
● More..

QEMU Peripherals

● Provide registration function
● Register callbacks for control
register access
● Combinational logic
● Timers
● Interrupts
● QEMU I/O

● Networking
● Serial ports
● IPC
● etc...

QEMU Peripherals

● Instantiate CPU cores
● Define Address map
● Wire up all the devices
● Load kernel/OS images

QEMU Boards

Debugging and Profiling CRIS

● Builtin GDB stub
● Execution traces
● L1 Cache model
● Processor pipeline model
● Interrupt latency tracker
● Kcachegrind compatible statistics
● Track peripheral programming
inefficiencies and errors

Builtin GDB stub

● Non-intrusive
● Controllable from first executed insn
● HW Breakpoints
● HW Watchpoints
● VM time stops while halted
● Configurable interrupts while single-
stepping
● Experimental patch for tracepoints

CRIS Cache

● L1 cache model
● Controller and tag memories.
● Does not include the data path/memories.
● Snoops on other bus masters.

Index Tag Valid Dirty

0 x 0 0

1 x 1 0

2 x 1 1

... x 0 0

Index Data

0 x

1 x

2 x

... x

Address from CPU

Tag Index Line offset

CRIS Cache

● QEMU Cache tag memories
● Not really bound by size.
● Extended with debug info.

● Virtual Address for the access.
● Virtual PC for the access.
● One dirty bit per line word.

● Connected to GDB
● Stop execution on cache-miss (misspoints)

Index Tag Valid Dirty VPC Vaddr

0 x 0 000..

1 x 1 010..

2 x 1 110..

... x 0 000..

CRIS Cache

● Track wasted writeback cycles
● Due to fragmented store patterns

CRIS Cache

● Track wasted writeback cycles
● Due to fragmented store patterns

● Reorganize global data
● __read_mostly attribute

● Reorganize structures

CRIS Cache

● Cache snoops on DMA accesses
● Incoherence warnings.
● TODO: Debugger breakpoints

CRIS Pipeline

● Work in progress
● Intra TB

● Computed at translation time.
● Fast but not all locked cycles are seen.

● No branch prediction
● Logs PC address and symbol name

Interrupt Latency

● Track IRQ masking (CPU line).
● Log long paths.

● Time estimate based on core
frequency, instruction count, interlock
cycles and cache statistics.

● Helps reducing:
● Interrupt latency
● Jitter

c0010156 (badcode) -> c0010338 (badcode) lr=c0010330 9632 insns 10398 cycles 41592ns

Interrupt Latency

{
unsigned long flags;

spin_lock_irq_save(&lock1, flags);

/* code. */
If (something) {

spin_lock_irq_save(&lock2, flags);
/* More critical code. */
spin_unlock_irqrestore(&lock2, flags);

}
/* code. */

spin_unlock_irqrestore(&lock1, flags);
}

Kcachegrind

● Instruction count per function
● Instructions with interrupts masked

● Cycle estimate per function
● Cache model
● Pipeline model

● No callgraphs (TODO)

Peripheral Programming

 Warn for control register programming
errors and innefficiencies:

● Duplex mismatch MAC / PHY.
● Illegal combinations/setups.
● Unnecessary control register accesses.
● Enforce reserved fields

Peripheral Programming

 Simplified view

Peripheral Programming

struct ram_entry
{

u16 ctrl;
u16 pos;
...

};

volatile struct ram_entry *e = SOME_ADDRESS;
If (e->ctrl & 1) { … }
If (e->ctrl & 2) { … }
If (e->ctrl & 4) { … }
… more...

● Compiler emits loads/stores resulting in
deep bus transfers for every access to
ctrl!

Axis Devices

● ETRAX-FS
● Bare FS virtual machine
● Axis Devboard 88

● ARTPEC-3
● P3301, Q7401

● ARTPEC-4
● Prototype of virtual machine

● ARTPEC-B
● M3011

Axis Devices

● ETRAX-FS / ARTPEC-3
● CRIS core
● L1 Cache
● MMU
● PIC
● Timers
● DMA
● Ethernet with PHY models
● Asynch Serial Ports
● PIO (NAND flashes)
● NOR flashes
● GPIO

● Temperature sensors (i2c)

Axis Devices

● ARTPEC-B
● ARM926 core
● MMU
● PIC
● Timers
● Ethernet with PHY models
● Asynch Serial Ports
● NAND Controller
● GPIO
● Stub for RASC interface

● Just enough to boot.

Future work

● Emulate media sources
● Image and Audio pipelines.
● Codecs.

● Linux aware debugging
● Track kernel memory allocations.
● Kernel modules debuginfo.
● Track user-space processes in

system emulation.
● TLB profiler

Summary

● Early access to hardware
● Initial testing

● Debugging
● Early boot code
● Cache incoherence
● Debug the debug code

● Profiling
● Interrupt latency
● Improve cache performance
● Avoid interlock cycles in hot loops

● Testing (future)
● FW up/downgrades
● Instrumentation

● I/O Stimulus

Questions

 Thanks for listening

URL: git://repo.or.cz/qemu/cris-port.git
edgar@axis.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

