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● We didnt have an emulator
● Fast
● Easy to use and extend
● Powerful debug capabilities

● QEMU - fun hobby project

Why



  

 

CRIS

● Code Reduced Instruction Set
● ISA designed for small footprint.
● GNU toolchain (binutils, GCC, GDB).

● CRISv8 (1999)
● Designed to be small and for low power 

consumption.
● 2-stage pipeline @ 100Mhz.
● uClinux (no MMU).

● CRISv10 (2000)
● Standard Linux (with MMU).

● CRISv32 (2004)
● 5-stage pipeline @ 200Mhz.
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CRISv32

● 32-bit RISC architecture
● Variable length (16bit) insn encoding.

● 5-stage pipeline
● Load+operate
● Enforces dependencies by interlocks.

● 2-stage Multiplier shares stage with MEM
● Auto-increment has no regforwarding
● load/store multiples lack regforwarding

● Delayed branches
● MMU / TLB

● 16 segments (linear or 8Kb paged).
● 8-bit ASID, 64 entries.

● L1 Cache
● 2 x 16Kb 2way VIPT.
● Coherent (buggy).

● No performance counters



  

 

ETRAX

● Ethernet Token Ring AXis
● Family of networking chips
● Lot's of I/O

● SCSI, IDE
● Ethernet, TokenRing
● USB, Parallel ports, Serial ports
● Etc..

● Print Servers, Storage Servers, Scan Servers, 
Network Cameras, Network Video Servers etc.

● ARTPEC
● AXIS family of video processing chips.



  

 

AXIS Communications

● Video surveillance
● Cameras, Video encoders, Decoders, SW etc

● Early with embedded linux



  

“QEMU is a generic 
and open source 

machine emulator 
and virtualizer.”
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● System emulation
● Emulates a complete machine.
● Cross run unmodified OS/Firmware.
● Can also emulate boot-roms including 

different bootstrap methods.
● Linux-user emulation

● Emulates the target processor.
● Cross run linux programs.
● Syscalls run natively on the host 

(through an argument translator).

QEMU
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Does not continously interpret 
guest ISA. Instead it translates 
guest machine code into host 

code.
● Fetching only done at translation time.
● Instruction decoding only done at translation 
time.
● Basic optimization at translation time.
● Lazy Condition Code flags evaluation.

QEMU



  

● On demand translation of instruction sequences 
from target to host ISA. The result is refered as a 
Translation Block.

● Translation is done through a portable intermediate 
generic code generator, Tiny Code Generator (TCG).

Dynamic Translation



  

● Per CPU target translators translate guest 
code into TCG operations.

● TCG runs generic optimization passes.
● Basic stuff, Regalloc, liveness analysis etc.

● TCG backends emit host machine code.

Tiny Code Generator

CRIS 
Translator

 TCG 
Generic 

Optimizer

TCG 
Backend



  

CRIS:
move.d $r9, $r10
ret
addq 3, $r10
...

TCG:
mov_i32 $r10, $r9
movi_i32 cc_x, $0x0
mov_i32 cc_result, $r10
---
mov_i32 btarget, $srp
movi_i32 tmp0, $0xfffffffe
and_i32 btarget, btarget, tmp0
movi_i32 btaken, $0x1
...

TCG x86 backend:
mov 0x24(%ebp), %eax
mov 0x6c(%ebp), %edx
...

Translation



  

● Subroutine calls from TB
● TCG needs to writeback and reload the 

CPUState around the call due to aliasing 
and helper side-effects.

● PURE | CONST helpers avoid wb & 
reloading.

● Nice if you can easily identify a complex 
target instruction sequence.

● Compiled by host compiler
● Optimization cost mostly taken at QEMU 

compile time.

TCG Helpers



  

● CRIS has implicit updates
● Emulators need to evaluate the condition 

code flags after every insn.

● Lazy evaluation
● Save operation and operands.
● Evauate when there is a dependency to 

the flags.

Lazy CC evalutions



  

● Target ports (TCG translators):
● Alpha, ARM, CRIS, MIPS, m68k, PPC, SH, 

SPARC32/64, x86 and x86_64.

● Host ports (TCG backends):
● ARM, HPPA, PPC, SPARC32, x86 and 

x86_64.

QEMU TCG



  

● Memory accesses
● No cache models.
● No bus transfer models.
● Limited bus topology modeling.

● SoftMMU
● QEMU fast TLB caches slower guest TLB.
● I faults taken between TB's.
● D faults abort and retranslate the current 

TB with extra info to find the actual guest 
insn that caused the exception.

● Interrupts
● Taken between TB's.

QEMU IO



  

● Interrupt controllers
● DMA units
● Flash memories (NOR/NAND)
● Networking

● Flexible ways to connect to the host.
● Support for DMA and PHY control.

● IDE / SCSI controllers
● Serial ports
● Graphic adapters
● Audio adapters
● More..

QEMU Peripherals



  

● Provide registration function
● Register callbacks for control 
register access
● Combinational logic
● Timers
● Interrupts
● QEMU I/O

● Networking
● Serial ports
● IPC
● etc...

QEMU Peripherals



  

● Instantiate CPU cores
● Define Address map
● Wire up all the devices
● Load kernel/OS images

QEMU Boards



  

 

Debugging and Profiling CRIS

● Builtin GDB stub
● Execution traces
● L1 Cache model
● Processor pipeline model
● Interrupt latency tracker
● Kcachegrind compatible statistics
● Track peripheral programming 
inefficiencies and errors



  

 

Builtin GDB stub

● Non-intrusive
● Controllable from first executed insn
● HW Breakpoints
● HW Watchpoints
● VM time stops while halted
● Configurable interrupts while single-
stepping
● Experimental patch for tracepoints



  

 

CRIS Cache

● L1 cache model
● Controller and tag memories.
● Does not include the data path/memories.
● Snoops on other bus masters.

Index Tag Valid Dirty

0 x 0 0

1 x 1 0

2 x 1 1

... x 0 0

Index Data

0 x

1 x

2 x

... x

Address from CPU

Tag Index Line offset



  

 

CRIS Cache

● QEMU Cache tag memories
● Not really bound by size.
● Extended with debug info.

● Virtual Address for the access.
● Virtual PC for the access.
● One dirty bit per line word.

● Connected to GDB
● Stop execution on cache-miss (misspoints)

Index Tag Valid Dirty VPC Vaddr

0 x 0 000..

1 x 1 010..

2 x 1 110..

... x 0 000..



  

 

CRIS Cache

● Track wasted writeback cycles
● Due to fragmented store patterns



  

 

CRIS Cache

● Track wasted writeback cycles
● Due to fragmented store patterns

● Reorganize global data
● __read_mostly attribute

● Reorganize structures



  

 

CRIS Cache

● Cache snoops on DMA accesses
● Incoherence warnings.
● TODO: Debugger breakpoints



  

 

CRIS Pipeline

● Work in progress
● Intra TB

● Computed at translation time.
● Fast but not all locked cycles are seen.

● No branch prediction
● Logs PC address and symbol name



  

 

Interrupt Latency

● Track IRQ masking (CPU line).
● Log long paths.

● Time estimate based on core 
frequency, instruction count, interlock 
cycles and cache statistics.

● Helps reducing:
● Interrupt latency
● Jitter

c0010156 (badcode) -> c0010338 (badcode) lr=c0010330 9632 insns 10398 cycles 41592ns



  

 

Interrupt Latency

{
unsigned long flags;

spin_lock_irq_save(&lock1, flags);

/* code.  */
If (something) {

spin_lock_irq_save(&lock2, flags);
/* More critical code.  */
spin_unlock_irqrestore(&lock2, flags);

}
/* code.  */

spin_unlock_irqrestore(&lock1, flags);
}



  

 

Kcachegrind

● Instruction count per function
● Instructions with interrupts masked

● Cycle estimate per function
●  Cache model
●  Pipeline model

● No callgraphs (TODO)



  

 

Peripheral Programming

 Warn for control register programming 
errors and innefficiencies:

● Duplex mismatch MAC / PHY.
● Illegal combinations/setups.
● Unnecessary control register accesses.
● Enforce reserved fields



  

 

Peripheral Programming

 Simplified view



  

 

Peripheral Programming

struct ram_entry
{

u16 ctrl;
u16 pos;
...

};

volatile struct ram_entry *e = SOME_ADDRESS;
If (e->ctrl & 1)    { … }
If (e->ctrl & 2)    { … }
If (e->ctrl & 4)    { … }
… more...

● Compiler emits loads/stores resulting in 
deep bus transfers for every access to 
ctrl!



  

 

Axis Devices

● ETRAX-FS
● Bare FS virtual machine
● Axis Devboard 88

● ARTPEC-3
● P3301, Q7401 

● ARTPEC-4
● Prototype of virtual machine

● ARTPEC-B
● M3011



  

 

Axis Devices

● ETRAX-FS / ARTPEC-3
● CRIS core
● L1 Cache
● MMU
● PIC
● Timers
● DMA
● Ethernet with PHY models
● Asynch Serial Ports
● PIO (NAND flashes)
● NOR flashes
● GPIO

● Temperature sensors (i2c)



  

 

Axis Devices

● ARTPEC-B
● ARM926 core
● MMU
● PIC
● Timers
● Ethernet with PHY models
● Asynch Serial Ports
● NAND Controller
● GPIO
● Stub for RASC interface

● Just enough to boot.



  

 

Future work

● Emulate media sources
● Image and Audio pipelines.
● Codecs.

● Linux aware debugging
● Track kernel memory allocations.
● Kernel modules debuginfo.
● Track user-space processes in 

system emulation.
● TLB profiler



  

 

Summary

● Early access to hardware
● Initial testing

● Debugging
● Early boot code
● Cache incoherence
● Debug the debug code

● Profiling
● Interrupt latency
● Improve cache performance
● Avoid interlock cycles in hot loops

● Testing (future)
● FW up/downgrades
● Instrumentation

● I/O Stimulus



  

 

Questions

 Thanks for listening

URL: git://repo.or.cz/qemu/cris-port.git
edgar@axis.com
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