
A View from the Trenches: 
Embedded Functionality and its Impacts 
on multi-arch Kernel Maintenance

Bruce Ashfield – Principal Technologist – Wind River
ELC
February 2012



ELC 2012: Embedded Kernel Maintenance2

Introduction

 (Embedded) maintenance is challenging .. and 
sometimes just 'different'

– No single dominant reason

– Code is code and a good change is a good change

– No silver bullet, flexibility is key

• Have a toolkit of tricks

 Experience can make a difference

– 5+ years, 6 arches and 100's of BSPs

– Many maintenance techniques later ..



ELC 2012: Embedded Kernel Maintenance3

Properties of an Embedded Changeset

 Vendor / expert driven
– Low level, written by those that know the hardware

 Specific
– Focussed development
– Specific board, specific problem, specific kernel

 Potential for conflicts
 Not always (rarely?) developed with upstream in mind

– Quality is typically 'good enough'
– Reuse, maintainability and conformance suffer

 Given (tossed) to others to support and clean up
– Developer and maintainer can have different priorities
– Intersection is key



ELC 2012: Embedded Kernel Maintenance4

Anatomy of an Embedded Changeset

workflow
build

system
good

undecided

'not so good'

good

undecided

'not so good'

upstream



ELC 2012: Embedded Kernel Maintenance5

Change Lifecycle: High Level

1. Arrival
triage and assess (@#$#@)

2. Merge
Where? How ?
Refactor and recycle

3. Maintain
build, boot, regression test

4. Upstream
not always possible

5. Carry forward / uprev
6. Repeat (goto #2)



ELC 2012: Embedded Kernel Maintenance6

Understand the Subject

 mechanics
– manipulating and merging

 understanding
– the goal
– the change

 Look at the patches and learn the basics
– consult as required
– tune in: follow mainline and arch development



ELC 2012: Embedded Kernel Maintenance7

It's Merged .. Now What ?

 Does it work ?
– Build coverage
– Boot coverage
– Self / feature tests

 Carry forward plan
– Carry for as little time as possible
– Upstream merge strategy

 Look for refactoring opportunities
– Keep up to date with mainline evolution



ELC 2012: Embedded Kernel Maintenance8

Management Techniques: evolution

 Directories full of patches
– ~20-100 patches, largely single variant

 Patch lists + tools
– ~200-400 patches, a few variants

 Patch lists with intelligence
– ~400+ patches, several variants 

 Revision control + tracking
– ~2000 patches, many variants

 Revision control + tracking + change control
– ~20000+ changes, many variants and flexibility

 Ordering and stacking is important
– Protect the 'hard' parts of the system
– Allow the portable / Easy part to flex



ELC 2012: Embedded Kernel Maintenance9

Tools & Techniques

 Goal: produce a clean and obvious change history
– reproducible, extractable, maintainable and 

'upstreamable'
 Contentious topic
 Techniques and workflow are as important as tools
 Use a SCM

– git .. or something else
 Add some tools

– git, quilt, guilt, stgit, topgit ...
 Resolve and merge conflicts

– git, wiggle, merge tools ...
 Develop, build and test

– Same environment and techniques as maintenance



ELC 2012: Embedded Kernel Maintenance10

Yocto Kernel Model

 Revision Control Based
– hybrid model

• patches backed by a SCM or a SCM backed by patches
• fast forward and/or rebased

– code and config are coupled
 Separate repository can track patches

– tree can be rebuilt from scratch at any time
– clear and obvious history

 Branches track incompatible / conflicting changes
– isolation and control

 Manipulated using the tools of your choice
 Maintenance, development and build are integrated
 Has a complexity cost



ELC 2012: Embedded Kernel Maintenance11

Yocto Kernel Overview

kernel.org

'standard'
kernel

BSP features*

realtime (rt)
kernel

BSP features*

BSP features*

BSP features*

BSP-rt features*

BSP-rt features*

patches +
config

patches +
config

backing / tracking
repository



ELC 2012: Embedded Kernel Maintenance12

Examples / War Stories

 Schedulers
– EDF, BFS, CFS and O(1) 

 Size versus flexibility
– Linux tiny

 Extensive, but optional, functionality
– preempt-rt
– lttng

 Extensive and specific functionality
– SDKs
– cramfs linear XIP
– grsecurity

 “Don't change that”
– 8250.c



ELC 2012: Embedded Kernel Maintenance13

Directions & Solutions

 Tools are important, but not the answer

 Evolution and following of best practices 

 More “upstream first”

 Collaboration
– community kernels and consolidation
– Sharing of tools and techniques

 Less work for everyone



ELC 2012: Embedded Kernel Maintenance14

Q & A


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

