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What is multicore?? 

1. Multicore trends 

2. New Architectures 

3. Software Support 



Multicore Trends on Embedded Devices 
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Global Server/Desktop CPU and Application Processor Market Forecast 

AP Market 

CPU Market 

(Billion Dollars) 

About 49% growth each year 

AP surpass CPU by 2015 

 Multicore based Application Processor market is expanding 

 



Multicore based Embedded Devices 
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 Ex) Quad-core CPU:Exynos 4412, Snapdragon S4, Tegra 4, etc 

 



New Mobile Processor Archtecture [1] 
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 A Multi-Core CPU Architecture for Low Power and High Performance 

Power-Performance gain curve of vSMP technology  Tegra3 Architecture 



New Mobile Processor Archtecture [2] 
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 Cortex-A15 and Cortex-A7 are ISA identical 

 Cortex-A15 achieves high performance 

 Cortex-A7 is highly energy efficient 

 Samsung, Exynos 5410 : 4 big cores(Cotex-A15) + 4 small cores(Cotex-A7) 

 

big.LITTLE Architecture 

Cortex-A15-Cortex-A7 DVFS Curves 



 Useful programing libraries and models are needed for multicore 

- Ex) OpenMP, OpenCL, … 

 

 More software development tools are needed for multicore 

 

 Continuously, enhanced OS features are needed for multicore 

- Load balancing issue, Cache affinity,… 

 

 

 

Software Issues in Multicore 
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 Traditional kernel technique 

 Energy efficient SW technique 

 Heterogeneous SW technique 

 Virtual SW technique 
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1. Before v2.6 

2. After v2.6 

3. Current Scheduler 



Scheduler Before Kernel V2.6 
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 User circular queue & Minimal design 

 Round-Robin scheduling policy 

- Ring type runqueue for runnable task 

 Scheduling class supporting 

- Real-Time, Non Real-Time Task Class 

 Including SMP(Symmetric Multiprocessing) support 

 

 

 Lack of scalability 

 Weak for real-time systems 

 Single runqueue supporting 

- Throughput oriented design 

- O(N) complexity: the time it takes to schedule a task is a function of the 
number of tasks in the system 

 



The early 2.6 Scheduler 
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 Slow response time  

- Frequent time slice allocation 

 Throughput fall  

- Excessive switching overhead 

 None fair condition 

- Nice 0 (100ms), Nice 1(95ms) => 5% 

- Nice 18(10ms), Nice 19(5ms)  => 50%  

 

1 
0 
0 
1 

0 
1 
0 
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The Runqueue of Priority 0 

The Runqueue of Priority 1 

The Runqueue of Priority 2 

The Runqueue of Priority 3 

The Runqueue of Priority 137 

The Runqueue of Priority 138 

The Runqueue of Priority 139 

The Runqueue of Priority 140 

bitmap 

schedule() sched_find_first_set() 

The early 2.6 scheduler data structure 

 O(1) complexity supporting :  using bitmap operation 

 Dual runqueues 

- Active run queue 

- Expired run queue 

 Much more scalable 

 Incorporated interactivity metrics 

- Numerous heuristics (I/O , processor bound) 

 

 

 



Current Scheduler 
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 The main idea is to maintain balance(fairness) in providing processor time to tasks 

 To determine the balance, the CFS maintains the amount of time provided to a 
given task in what’s called the ‘virtual time’ 

 The CFS maintains a time-ordered red-black tree 

- Self balancing 

- O(log n) time complexity 

 SMP affinity 

 Basic load balancing 

 Priorities and CFS 

 CFS group scheduling (after 2.6.24) 

  

Example of a red-black tree 
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1. Load Balancing  

2. Limitations 

3. Requirement of 
multicore embedded 
devices 



Load Balancing of CFS (1) 
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Start Load Balancing in CFS 
1. Task Fok, Exec, Wakeup 
2. Idle Runqueue 
3. Periodic Checking Algorithm 
     (check and find busiest runqueue) 
 

Core1 Core2 Core3 Core4 

Is there the busiest queue?? 

Core 4 is the busiest queue 
Migration tasks 

Migration 

Runqueue Tree(Core 1) Runqueue Tree(Core 4) 



Load Balancing of CFS (2) 
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 Load of runqueue : 

 

 

 

 Amount of load to be moved : 

 

 

 

 CFS does not move any task if the following condition holds : 

 

 

 

 

  



Limitations of CFS (1) 
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 Fail to achieve fairness  in multicore 

 

  

Core1 Core2 

T1 
Nice :0 
Weight
 : 1024 

T2 
Nice :5 
Weight
 : 335 

T3 
Nice :5 
Weight
 : 335 

T4 
Nice :5 
Weight
 : 335 

T5 
Nice :5 
Weight
 : 335 

T1 
Nice :0 
Weight
 : 1024 

T2 
Nice :5 
Weight
 : 335 

T3 
Nice :5 
Weight
 : 335 

T4 
Nice :5 
Weight
 : 335 

T5 
Nice :5 
Weight
 : 335 

R1 R2 

Weight of R1 (runqueue of core1) : 1024 
Weight of R2 (runqueue of core2) : 335 * 4 = 1340 
Average of runque Load : 1182 
 
 
 
 
 
Limbal = min(min(1340, 1182), 1182 – 1024) 
          = 158 
 
But, 158 < 335/2 
 
Load Balancing will not be performed 
 
 
T1 weight = (T2~T5) weight X 3 
 
Run Time of T1 = Run Time of (T2~T5) X 4  
 
=> Fairness will be broken. 



Multicore and CFS 
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 Load Balancing 

- The most effective distribution is to have equal amounts of each core 

- Global fairness is most important 

 

 Caches of Processors 

- CPU-affinity should be considered 

- Cache effectiveness vs. Global fairness 

 I/O intensive processing 

 Small number of tasks 

 Foreground vs. Background Task 

 Interactive task (touch screen GUI) 

 Energy efficient 

 Web-based application 
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1. Introduction  

2. Basic Concept 

3. Operation 

4. Weak Points 



 Li, T., Baumberger, D., and Hahn, S.: "Efficient and scalable multiprocessor fair scheduling using 
distributed weighted round-robin", ACM SIGPLAN Notices, 2009, 44, (4), pp. 65-74 

DWRR(Distributed Weighted Round-Robun) 
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 Manages task fairness every round 

RQ : runqueue 
EQ : Expired RQ 
All queue : red-black Tree 

RQ EQ RQ EQ RQ EQ RQ EQ 

Core1 Core2 Core3 Core4 



 Round : the shortest time period during which every thread in the 
system completes at least one of its round slice 

 

 Round Slice : w*B (w : thread’s weight, B : system-wide constant) 

 

 

 

Basic Concept 
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 Round Balancing 

- It allows threads to go through the same number of rounds in any 
time interval. 

- Whenever a CPU finishes round balancing to move over threads 
from other CPUs before advancing to the next round 

 



Operation of DWRR 
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(½) 

(½) 

Locally fair 

Source :  Li, T., Baumberger, D., and Hahn, S.: "Efficient and scalable multiprocessor fair scheduling using distributed weighted round-robin",  
            ACM SIGPLAN Notices, 2009, 44, (4), pp. 65-74 

 



 DWRR can  always guarantee higher fairness among tasks 

 

 But, DWRR may suffer from poor interactivity due to the existence 
of two runqueues originated from O(1) scheduler 

 

 Frequent task migration may cause migration overhead 

 

 DWRR has several practical implementation issues 

DWRR Weak Points 
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1. Test Environment 

2. Fairness Test 

3. Scheduler Benchmark 

4. CPU Intensive Workload 

5. Database Workload 

6. JavaScript Benchmark 



 Target Board : OdroidQ (hardkernel) 

- Exynos 4412 ARM Cotex-A9 Quad Core 

- Linaro Ubuntu 12.04 

- Kernel version 3.0.41 

- CFS (sched_min_granularity = 0.75ms, sched_latency = 6ms, sched_nr_latency = 8 ) 

- DWRR (round slice = 25msec) 

Test Environment 

24 Arm Quad Core Architecture Target System 



 Test Method 

- Creates and runs 5 threads on 4 multicores 

- Measures average utilization of each cores and  
calculates standard deviation 

 

Fairness Test 
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CFS (3.0.15) CFS with DWRR (3.0.15) 



 When a scheduler has a large number of threads competing for some 
set of mutexes 

 

 Commnad : 
- sysbench –num-threads=32 –test=threads –thead-yields=100 0–thread-locks= 8 run 

 

 

Scheduler Performance 
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scheduler CFS 
(sched_granularity = 0.75) 

CFS 
(sched_granularity = 0.5) 

CFS 
(sched_granularity = 0.25) 

DWRR 
(round_slice unit = 0.25) 

Total time 12.8319s 13.0980s 21.3573s 7.4515s 

Total Number of 
Events 

10000 10000 10000 10000 

Total time taken 
by event 
execution 

410.0162 418.2351 682.6435 237.6006 

Threads Fairness Events (avg/stddev) :  
312.5000/9.67 
 
Execution time (avg/stddev) : 
12.8130/0.01 
 

Events (avg/stddev) :  
312.5000/10.60 
 
Execution time (avg/stddev) : 
13.0698/0.01 
 

Events (avg/stddev) :  
312.5000/6.98 
 
Execution time (avg/stddev) : 
21.3326/0.01 
 

Events (avg/stddev) :  
312.5000/41.63 
 
Execution time (avg/stddev) : 
7.4250/0.01 
 



 Mplayer –benchmark –nosound –ao null –vo null robot_720p.mp4 

 

- Running time : 150s 

 

CPU Intensive Test 
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scheduler CFS 
(sched_granularity = 0.75) 

CFS 
(sched_granularity = 0.5) 

CFS 
(sched_granularity = 0.25) 

DWRR 
(round_slice unit = 0.25) 

BenchmarkS Video Codec : 38.011s 
Video Out : 0.016s 
Audio : 0s 
Sys : 1.138s 
 
Total : 39.165s 
 

Video Codec : 39.562s 
Video Out : 0.017s 
Audio : 0s 
Sys : 2.381s 
 
Total : 41.960s 

Video Codec : 40.206s 
Video Out : 0.017s 
Audio : 0s 
Sys : 6.104s 
 
Total : 46.327s 

Video Codec : 26.580s 
Video Out : 0.014s 
Audio : 0s 
Sys : 1.024s 
 
Total : 27.617s 

Benchmark% Video Codec : 97.0533% 
Video Out : 0.0409% 
Sys : 2.9057% 
 
Total : 100% 

Video Codec : 94.2858% 
Video Out : 0.0403% 
Sys : 5.6739% 
 
Total : 100% 

Video Codec : 86.7869% 
Video Out : 0.0362% 
Sys : 13.1769% 
 
Total : 100% 

Video Codec : 96.2441% 
Video Out : 0.0489% 
Sys : 3.7070% 
 
Total : 100% 
 



 Benchmark : Sysbench, Database : Mysql 
- sysbench --test=oltp --mysql-user=sbtest --mysql-password=sbtest --mysql-

table-engine=myisam --oltp-table-size=1000000 --mysql-
socket=/var/run/mysqld/mysqld.sock prepare 

 

- sysbench --test=oltp --mysql-user=sbtest --mysql-password=sbtest --oltp-table-
size=1000000 --mysql-socket=/var/run/mysqld/mysqld.sock --max-requests=100000 
--oltp-read-only --num-threads=16 run 

 

 

Database Workload 
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scheduler CFS 
(sched_granularity = 0.75) 

CFS 
(sched_granularity = 0.5) 

CFS 
(sched_granularity = 0.25) 

DWRR 
(round_slice unit = 0.25) 

Query Performed Read : 1400644 
Write : 0 
Other : 200092 
Total : 1600736 

Read : 1400560 
Write : 0 
Other : 200080 
Total : 1600640 

Read : 1400616 
Write : 0 
Other : 200088 
Total : 1600704 

Read : 1400896 
Write : 0 
Other : 200128 
Total : 1601024 

Transactions 100046 
(273.63 per sec.) 

100040 
(322.05 per sec.) 

100044 
(389.61 per sec.) 

100064 
(353.96 per sec.) 



JavaScript Benchmark 
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scheduler CFS 
(sched_granularity = 0.75) 

CFS 
(sched_granularity = 0.5) 

CFS 
(sched_granularity = 0.25) 

DWRR 
(round_slice unit = 0.25) 

Total 1533.6ms +/- 0.8% 2289.1ms +/- 0.6% 2284.4ms +/- 0.6% 1533.2ms +/- 1.3% 

3d 265.7ms +/- 1.5% 374.0ms +/- 1.5% 371.6ms +/- 1.8% 273.4ms +/- 2.9% 

access 191.0ms +/- 2.8% 299.7ms +/- 2.8% 301.9ms +/- 4.0% 194.3ms +/- 4.8% 

bitops 102.5ms +/- 2.3% 178.1ms +/- 3.3% 176.1ms +/- 2.5% 105.6ms +/- 7.0% 

controlflow 14.5ms +/- 4.2% 23.1ms +/- 6.6% 22.2ms +/- 3.0% 14.4ms +/- 5.3% 

cryoto 148.1ms +/- 6.8% 190.5ms +/- 1.6% 192.7ms +/- 2.4% 145.2ms +/- 2.7% 

date 200.3ms +/- 6.7% 283.9ms +/- 2.7% 288.6ms +/- 2.0% 199.7ms +/- 4.6% 

math 205.0ms +/- 1.3% 207.3ms +/- 2.2% 205.0ms +/- 1.3% 124.2ms +/- 4.6% 

regexp 123.1ms +/- 1.1% 99.3ms +/- 2.0% 99.4s +/- 3.3% 65.2ms +/- 5.1% 

string 417.3ms +/- 2.2% 633.2ms +/- 1.1% 626.9ms +/- 0.7% 411.2ms +/- 1.7% 
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 Multicore processors are becoming an integral part of embedded 
devices 

 In Linux, CFS is the best scheduler until now 

- CFS performs load balancing depending on task’s weight 

- The weight-based algorithms fails to achieve global fairness in 
practical  

 DWRR can be new trial to improve the multicore in terms of fairness 

 Rethink the scheduler for multicore embedded devices. 

 

 

 

Conclusion and future work 
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 Optimal load balancing algorithm 

 Enhanced runqueue structure 

 Per core scheduler policy 

 




