
Embedded Linux Conference 2013

Task Scheduling for Multicore
Embedded Devices

2013. 02. 22.

Gap-Joo Na
(funkygap@etri.re.kr)

Contents

2

3

What is multicore??

1. Multicore trends

2. New Architectures

3. Software Support

Multicore Trends on Embedded Devices

4

Global Server/Desktop CPU and Application Processor Market Forecast

AP Market

CPU Market

(Billion Dollars)

About 49% growth each year

AP surpass CPU by 2015

 Multicore based Application Processor market is expanding

Multicore based Embedded Devices

5

 Ex) Quad-core CPU:Exynos 4412, Snapdragon S4, Tegra 4, etc

New Mobile Processor Archtecture [1]

6

 A Multi-Core CPU Architecture for Low Power and High Performance

Power-Performance gain curve of vSMP technology Tegra3 Architecture

New Mobile Processor Archtecture [2]

7

 Cortex-A15 and Cortex-A7 are ISA identical

 Cortex-A15 achieves high performance

 Cortex-A7 is highly energy efficient

 Samsung, Exynos 5410 : 4 big cores(Cotex-A15) + 4 small cores(Cotex-A7)

big.LITTLE Architecture

Cortex-A15-Cortex-A7 DVFS Curves

 Useful programing libraries and models are needed for multicore

- Ex) OpenMP, OpenCL, …

 More software development tools are needed for multicore

 Continuously, enhanced OS features are needed for multicore

- Load balancing issue, Cache affinity,…

Software Issues in Multicore

 8

 Traditional kernel technique

 Energy efficient SW technique

 Heterogeneous SW technique

 Virtual SW technique

9

1. Before v2.6

2. After v2.6

3. Current Scheduler

Scheduler Before Kernel V2.6

10

 User circular queue & Minimal design

 Round-Robin scheduling policy

- Ring type runqueue for runnable task

 Scheduling class supporting

- Real-Time, Non Real-Time Task Class

 Including SMP(Symmetric Multiprocessing) support

 Lack of scalability

 Weak for real-time systems

 Single runqueue supporting

- Throughput oriented design

- O(N) complexity: the time it takes to schedule a task is a function of the
number of tasks in the system

The early 2.6 Scheduler

11

 Slow response time

- Frequent time slice allocation

 Throughput fall

- Excessive switching overhead

 None fair condition

- Nice 0 (100ms), Nice 1(95ms) => 5%

- Nice 18(10ms), Nice 19(5ms) => 50%

1
0
0
1

0
1
0
1

The Runqueue of Priority 0

The Runqueue of Priority 1

The Runqueue of Priority 2

The Runqueue of Priority 3

The Runqueue of Priority 137

The Runqueue of Priority 138

The Runqueue of Priority 139

The Runqueue of Priority 140

bitmap

schedule() sched_find_first_set()

The early 2.6 scheduler data structure

 O(1) complexity supporting : using bitmap operation

 Dual runqueues

- Active run queue

- Expired run queue

 Much more scalable

 Incorporated interactivity metrics

- Numerous heuristics (I/O , processor bound)

Current Scheduler

12

 The main idea is to maintain balance(fairness) in providing processor time to tasks

 To determine the balance, the CFS maintains the amount of time provided to a
given task in what’s called the ‘virtual time’

 The CFS maintains a time-ordered red-black tree

- Self balancing

- O(log n) time complexity

 SMP affinity

 Basic load balancing

 Priorities and CFS

 CFS group scheduling (after 2.6.24)

Example of a red-black tree

1
3

1. Load Balancing

2. Limitations

3. Requirement of
multicore embedded
devices

Load Balancing of CFS (1)

14

Start Load Balancing in CFS
1. Task Fok, Exec, Wakeup
2. Idle Runqueue
3. Periodic Checking Algorithm
 (check and find busiest runqueue)

Core1 Core2 Core3 Core4

Is there the busiest queue??

Core 4 is the busiest queue
Migration tasks

Migration

Runqueue Tree(Core 1) Runqueue Tree(Core 4)

Load Balancing of CFS (2)

15

 Load of runqueue :

 Amount of load to be moved :

 CFS does not move any task if the following condition holds :

Limitations of CFS (1)

16

 Fail to achieve fairness in multicore

Core1 Core2

T1
Nice :0
Weight
 : 1024

T2
Nice :5
Weight
 : 335

T3
Nice :5
Weight
 : 335

T4
Nice :5
Weight
 : 335

T5
Nice :5
Weight
 : 335

T1
Nice :0
Weight
 : 1024

T2
Nice :5
Weight
 : 335

T3
Nice :5
Weight
 : 335

T4
Nice :5
Weight
 : 335

T5
Nice :5
Weight
 : 335

R1 R2

Weight of R1 (runqueue of core1) : 1024
Weight of R2 (runqueue of core2) : 335 * 4 = 1340
Average of runque Load : 1182

Limbal = min(min(1340, 1182), 1182 – 1024)
 = 158

But, 158 < 335/2

Load Balancing will not be performed

T1 weight = (T2~T5) weight X 3

Run Time of T1 = Run Time of (T2~T5) X 4

=> Fairness will be broken.

Multicore and CFS

17

 Load Balancing

- The most effective distribution is to have equal amounts of each core

- Global fairness is most important

 Caches of Processors

- CPU-affinity should be considered

- Cache effectiveness vs. Global fairness

 I/O intensive processing

 Small number of tasks

 Foreground vs. Background Task

 Interactive task (touch screen GUI)

 Energy efficient

 Web-based application

1
8

1. Introduction

2. Basic Concept

3. Operation

4. Weak Points

 Li, T., Baumberger, D., and Hahn, S.: "Efficient and scalable multiprocessor fair scheduling using
distributed weighted round-robin", ACM SIGPLAN Notices, 2009, 44, (4), pp. 65-74

DWRR(Distributed Weighted Round-Robun)

19

 Manages task fairness every round

RQ : runqueue
EQ : Expired RQ
All queue : red-black Tree

RQ EQ RQ EQ RQ EQ RQ EQ

Core1 Core2 Core3 Core4

 Round : the shortest time period during which every thread in the
system completes at least one of its round slice

 Round Slice : w*B (w : thread’s weight, B : system-wide constant)

Basic Concept

20

 Round Balancing

- It allows threads to go through the same number of rounds in any
time interval.

- Whenever a CPU finishes round balancing to move over threads
from other CPUs before advancing to the next round

Operation of DWRR

21

(½)

(½)

Locally fair

Source : Li, T., Baumberger, D., and Hahn, S.: "Efficient and scalable multiprocessor fair scheduling using distributed weighted round-robin",
 ACM SIGPLAN Notices, 2009, 44, (4), pp. 65-74

 DWRR can always guarantee higher fairness among tasks

 But, DWRR may suffer from poor interactivity due to the existence
of two runqueues originated from O(1) scheduler

 Frequent task migration may cause migration overhead

 DWRR has several practical implementation issues

DWRR Weak Points

22

2
3

1. Test Environment

2. Fairness Test

3. Scheduler Benchmark

4. CPU Intensive Workload

5. Database Workload

6. JavaScript Benchmark

 Target Board : OdroidQ (hardkernel)

- Exynos 4412 ARM Cotex-A9 Quad Core

- Linaro Ubuntu 12.04

- Kernel version 3.0.41

- CFS (sched_min_granularity = 0.75ms, sched_latency = 6ms, sched_nr_latency = 8)

- DWRR (round slice = 25msec)

Test Environment

24 Arm Quad Core Architecture Target System

 Test Method

- Creates and runs 5 threads on 4 multicores

- Measures average utilization of each cores and
calculates standard deviation

Fairness Test

25

CFS (3.0.15) CFS with DWRR (3.0.15)

 When a scheduler has a large number of threads competing for some
set of mutexes

 Commnad :
- sysbench –num-threads=32 –test=threads –thead-yields=100 0–thread-locks= 8 run

Scheduler Performance

26

scheduler CFS
(sched_granularity = 0.75)

CFS
(sched_granularity = 0.5)

CFS
(sched_granularity = 0.25)

DWRR
(round_slice unit = 0.25)

Total time 12.8319s 13.0980s 21.3573s 7.4515s

Total Number of
Events

10000 10000 10000 10000

Total time taken
by event
execution

410.0162 418.2351 682.6435 237.6006

Threads Fairness Events (avg/stddev) :
312.5000/9.67

Execution time (avg/stddev) :
12.8130/0.01

Events (avg/stddev) :
312.5000/10.60

Execution time (avg/stddev) :
13.0698/0.01

Events (avg/stddev) :
312.5000/6.98

Execution time (avg/stddev) :
21.3326/0.01

Events (avg/stddev) :
312.5000/41.63

Execution time (avg/stddev) :
7.4250/0.01

 Mplayer –benchmark –nosound –ao null –vo null robot_720p.mp4

- Running time : 150s

CPU Intensive Test

27

scheduler CFS
(sched_granularity = 0.75)

CFS
(sched_granularity = 0.5)

CFS
(sched_granularity = 0.25)

DWRR
(round_slice unit = 0.25)

BenchmarkS Video Codec : 38.011s
Video Out : 0.016s
Audio : 0s
Sys : 1.138s

Total : 39.165s

Video Codec : 39.562s
Video Out : 0.017s
Audio : 0s
Sys : 2.381s

Total : 41.960s

Video Codec : 40.206s
Video Out : 0.017s
Audio : 0s
Sys : 6.104s

Total : 46.327s

Video Codec : 26.580s
Video Out : 0.014s
Audio : 0s
Sys : 1.024s

Total : 27.617s

Benchmark% Video Codec : 97.0533%
Video Out : 0.0409%
Sys : 2.9057%

Total : 100%

Video Codec : 94.2858%
Video Out : 0.0403%
Sys : 5.6739%

Total : 100%

Video Codec : 86.7869%
Video Out : 0.0362%
Sys : 13.1769%

Total : 100%

Video Codec : 96.2441%
Video Out : 0.0489%
Sys : 3.7070%

Total : 100%

 Benchmark : Sysbench, Database : Mysql
- sysbench --test=oltp --mysql-user=sbtest --mysql-password=sbtest --mysql-

table-engine=myisam --oltp-table-size=1000000 --mysql-
socket=/var/run/mysqld/mysqld.sock prepare

- sysbench --test=oltp --mysql-user=sbtest --mysql-password=sbtest --oltp-table-
size=1000000 --mysql-socket=/var/run/mysqld/mysqld.sock --max-requests=100000
--oltp-read-only --num-threads=16 run

Database Workload

28

scheduler CFS
(sched_granularity = 0.75)

CFS
(sched_granularity = 0.5)

CFS
(sched_granularity = 0.25)

DWRR
(round_slice unit = 0.25)

Query Performed Read : 1400644
Write : 0
Other : 200092
Total : 1600736

Read : 1400560
Write : 0
Other : 200080
Total : 1600640

Read : 1400616
Write : 0
Other : 200088
Total : 1600704

Read : 1400896
Write : 0
Other : 200128
Total : 1601024

Transactions 100046
(273.63 per sec.)

100040
(322.05 per sec.)

100044
(389.61 per sec.)

100064
(353.96 per sec.)

JavaScript Benchmark

29

scheduler CFS
(sched_granularity = 0.75)

CFS
(sched_granularity = 0.5)

CFS
(sched_granularity = 0.25)

DWRR
(round_slice unit = 0.25)

Total 1533.6ms +/- 0.8% 2289.1ms +/- 0.6% 2284.4ms +/- 0.6% 1533.2ms +/- 1.3%

3d 265.7ms +/- 1.5% 374.0ms +/- 1.5% 371.6ms +/- 1.8% 273.4ms +/- 2.9%

access 191.0ms +/- 2.8% 299.7ms +/- 2.8% 301.9ms +/- 4.0% 194.3ms +/- 4.8%

bitops 102.5ms +/- 2.3% 178.1ms +/- 3.3% 176.1ms +/- 2.5% 105.6ms +/- 7.0%

controlflow 14.5ms +/- 4.2% 23.1ms +/- 6.6% 22.2ms +/- 3.0% 14.4ms +/- 5.3%

cryoto 148.1ms +/- 6.8% 190.5ms +/- 1.6% 192.7ms +/- 2.4% 145.2ms +/- 2.7%

date 200.3ms +/- 6.7% 283.9ms +/- 2.7% 288.6ms +/- 2.0% 199.7ms +/- 4.6%

math 205.0ms +/- 1.3% 207.3ms +/- 2.2% 205.0ms +/- 1.3% 124.2ms +/- 4.6%

regexp 123.1ms +/- 1.1% 99.3ms +/- 2.0% 99.4s +/- 3.3% 65.2ms +/- 5.1%

string 417.3ms +/- 2.2% 633.2ms +/- 1.1% 626.9ms +/- 0.7% 411.2ms +/- 1.7%

3
0

 Multicore processors are becoming an integral part of embedded
devices

 In Linux, CFS is the best scheduler until now

- CFS performs load balancing depending on task’s weight

- The weight-based algorithms fails to achieve global fairness in
practical

 DWRR can be new trial to improve the multicore in terms of fairness

 Rethink the scheduler for multicore embedded devices.

Conclusion and future work

31

 Optimal load balancing algorithm

 Enhanced runqueue structure

 Per core scheduler policy

