
Rebuilding desktop distributions for small devices:
Handhelds Mojo

Andrew Christian

Nokia Research Center, Cambridge US

April 2008 Mojo: Handhelds Rebuild Project

The problem…

Mobile device

•  Maemo Linux, ~700 packages

•  Scratchbox build environment

Development Laptop

•  Ubuntu Gutsy Linux, ~12,000 packages

•  Native build environment

The mobile device has a limited “off-the-shelf” environment

What we’d like

A distribution for mobile & embedded devices with:

•  Large numbers of up-to-date binary packages

•  Well-defined releases with security and bug fixes

•  Code that takes full advantage of the processor

•  Easily interoperates with the developer’s desktop

April 2008 Mojo: Handhelds Rebuild Project

We don’t want to spend a lot of time
building and maintaining this…

Why existing solutions fall short…

Debian

•  Pro: Large number of packages (>10,000)

•  Con: Not optimized for hardware, infrequent stable releases

Open Embedded

•  Pro: Good optimization for hardware, interesting GUI work

•  Con: Small number of packages (~1680), doesn’t match desktop

Maemo

•  Pro: Good optimization for hardware, GUI

•  Con: Small number of packages (~700), Scratchbox can be tricky,
really doesn’t match desktop

April 2008 Mojo: Handhelds Rebuild Project

The Mojo approach

Strategy

1.  Build standard desktop distributions for small devices

2.  Modify the minimum number of packages necessary to compile

3.  Compile each distribution once for each hardware architecture

Start with

•  Ubuntu distributions and updates

•  Latest ARM instructions set

April 2008 Mojo: Handhelds Rebuild Project

Mojo distribution naming scheme

April 2008 Mojo: Handhelds Rebuild Project

Ubuntu Mojo
7.04 Feisty Fawn Frisky Firedrake
7.10 Gutsy Gibbon Grumpy Griffin
8.04 Hardy Heron Hasty Hippogriff

In the future we’d like to extend this to
Debian and other distributions

April 2008 Mojo: Handhelds Rebuild Project

The rest of the talk…

Critical choices and challenges
•  The build process – getting a stable place to stand
•  Matching the toolchain
•  Build machines – handling the “native” problem
•  Naming of names – Debian architecture

Current status
•  State of the distributions
•  Using the distributions

Desktop distribution build process

Key points

1.  The build system is running its own packages. Iteration required!

2.  The build system runs on native hardware

3.  The toolchain is intrinsic to the distribution and gets compiled
along with all of the other packages

April 2008 Mojo: Handhelds Rebuild Project

Original
source

code

Patch files:
code and
metadata

Source
Packages

Binary
Packages

Native
Build

System

Challenge #1: A stable place to stand

A Debian-style build system is a moving target

•  The build system relies on having a large number of installed binary
packages

•  The binary packages have to be (mostly) compatible with what you
are building

•  The system is inherently incremental: you build packages, install
them, build the next set, install them, ….

Where can we start? (A classic “chicken-and-egg” problem)

April 2008 Mojo: Handhelds Rebuild Project

The first challenge: EABI

EABI vs. OABI

Changes in the ARM Application Binary Interface

•  Floating point handling

•  Structure alignment

•  New Linux syscall interface (can co-exist with old)

Supported by:

•  ARMv4T and higher (ARMv4 with some hacks)

•  gcc 4.1.0 (4.1.1 for ARMv4T), binutils 2.16.92, glibc 2.4

•  Linux kernel 2.6.16+

April 2008 Mojo: Handhelds Rebuild Project

EABI and OABI do not interoperate

Building a distribution on EABI

First, you need an EABI distribution!

•  Debian “ARM” = OABI

•  Debian “ARMEL” & “ARMEB” = EABI

Early in 2007 ADS released a version of Debian compiled with EABI

•  Generated from an Open Embedded EABI distribution

April 2008 Mojo: Handhelds Rebuild Project

First pass on Debian ARM machine
with ADS-based chroot image

Challenge #2: Matching the toolchain

A toolchain is the combination of:

•  C compiler (gcc)

•  Linking and object tools (binutils)

•  Standard C libraries (glibc)

A “good” toolchain is one that passes a most of its test suites.

•  ARM is not the most popular architecture: building a “good” ARM
toolchain requires a fair bit of testing and patching

•  Toolchains depend in surprising ways on all sorts of other packages
(e.g. Perl, bash, …)

•  Number of errors from test suite decreases as you iterate; for
example, for gcc 4.1.2, we went from 11 to 5 to 0 with each iteration.

April 2008 Mojo: Handhelds Rebuild Project

The toolchain in Ubuntu

gcc binutils libc6
Dapper 4.0.3-1 2.16.1.cvs2006… 2.3.6-0ubuntu20
Edgy 4.1.1-6ubuntu3 2.17-1ubuntu1 2.4-1ubuntu12
Feisty 4.1.2-1ubuntu1 2.17.20070103… 2.5-0ubuntu4
Gutsy 4.1.2-9ubuntu2 2.18-0ubuntu3 2.6.1-1ubuntu9
Hardy 4.2.3-1ubuntu3 2.18.1~cvs2008… 2.7-10ubuntu3

April 2008 Mojo: Handhelds Rebuild Project

Native ARM toolchains can be a bit of a problem…

•  glibc <= 2.5 and binutils <= 2.17 had ARM C++ errors

•  A surprisingly large number of packages affect the toolchain

•  EABI supported by: gcc 4.1.0 (4.1.1 for ARMv4T), binutils 2.16.92,
glibc 2.4

Bootstrapping from ADS Debian Etch

April 2008 Mojo: Handhelds Rebuild Project

ADS ARMEL packages

Frisky revision 1

Frisky revision 2

Frisky revision 3

binutils

gcc

glibc
Many iterations

A few iterations

One iteration

binutils

gcc

glibc

binutils

gcc

glibc

Challenge #3: Handling the “native” problem

Desktop distributions are not cross-built: you need an ARM-based
machine to build an ARM-based distribution

•  Option #1: Fundamentally change the build system using
something like Scratchbox. We couldn’t find a good way to do this
without a lot of source package modifications

•  Option #2: Create a build cluster of ARM-based machines.

April 2008 Mojo: Handhelds Rebuild Project

Remember: One goal is the absolute minimal number
of modifications to existing source packages

Options for “native” build machines

April 2008 Mojo: Handhelds Rebuild Project

ARM Kernel

x86 Hardware

x86 Hardware

ARM Hardware

ARM Distribution

x86 Kernel

x86 Distribution

QEMU-SYSTEM-ARM

ARM Kernel

ARM Distribution

x86 Kernel + binfmt

QEMU-ARM

ARM Chroot

ARM Distribution

Pure ARM QEMU-ARM Chroot QEMU-SYSTEM-ARM

x86 Distribution

Virtual ARM Hardware

In early 2007 we looked at the time and
cost to build a sufficiently fast cluster

April 2008 Mojo: Handhelds Rebuild Project

2007 cluster: Native ARM build machines

20 home-built 1U ARM boxes

•  600 MHz Intel 80219 (ARMv5)

•  256 MB DRAM / 160 GB disk

•  Ethernet, USB

•  593 BogoMIPS

•  gcc-4.1 compile and test suite: 32
hours

4 days to build
Frisky Main

April 2008 Mojo: Handhelds Rebuild Project

2008 cluster: QEMU virtual ARM build machines

5 Dell PWS 390 (10 virtual machines)

•  2.66 GHz Intel Core2

•  2 GB DRAM / 80 GB disk

•  QEMU 0.9.1, Versatile PB

•  650 BogoMIPS

•  gcc-4.1 compile test: 25 hours

25% faster machines
than original cluster

Challenge #4: Debian architecture names

Debian ARM architecture schemes

•  arm ARMv3 + hard float package.arm.deb

•  armel ARMv4T, EABI, little-endian package.armel.deb

•  armeb ARMv4T, EABI, big-endian package.armeb.deb

The “arm/armel/armeb” architecture information appears in the
Architecture field of the Debian control file. Changing means changing
every source file….

April 2008 Mojo: Handhelds Rebuild Project

We’d like to optimize our code for the
exact processor type, not a generic one

Solutions to the naming problem

Option #1: Add new architectures

 armv5el ARMv5, EABI, little-endian (soft float)

 armv5teb-hard ARMv5, thumb, EABI, big-endian, hard float

 armv6elvfp ARMv6, EABI, little-endian, vector floating point

Option #2: Don’t follow Debian model…

April 2008 Mojo: Handhelds Rebuild Project

This requires modifying each source package
once for every architecture we compile

Our solution: Differentiate by feed

April 2008 Mojo: Handhelds Rebuild Project

/ ubuntu / dists / feisty / main / binary-i386, binary-arm, binary-sparc, source …
 / universe / binary-i386, ….

 / feisty-updates / main / binary-i386...

 / gutsy…

 / pool…

/ frisky-armv5el / dists / frisky / main / binary-arm, source
 / universe…

 / frisky-updates…

 / pool…

/ frisky-armv6el-vfp / dists / frisky / main / binary-arm, source

 / universe…

/ frisky-source / dists / frisky / main / source

CLASSIC

MOJO

The implications of differentiating by feed

•  No source packages need to be changed – we just use the “arm”
architecture

•  Debian systems use the default settings of the toolchain – so we
need to modify the toolchain once for each architecture target

•  The source packages end up in three different directories:

1.  Replicated copy from original distribution

2.  Common directory of modified source packages (“frisky-source”)

3.  Architecture-specific directory (“frisky-armv5el”)

•  We’re acting against explicit Debian policy. This is a subject for
discussion with Debian. Is there a better solution?

April 2008 Mojo: Handhelds Rebuild Project

April 2008 Mojo: Handhelds Rebuild Project

Where are we?

Critical choices and challenges
•  The build process – getting a stable place to stand
•  Matching the toolchain
•  Build machines – handling the “native” problem
•  Naming of names – Debian architecture

Current status
•  State of the distributions
•  Using the distributions

Current state

frisky-armv5el

•  Main, Universe “largely” complete and stable

•  Updates and security in progress

frisky-armv6el-vfp

•  Compiling Main

grumpy-armv5el

•  Main (first round) complete

April 2008 Mojo: Handhelds Rebuild Project

Frisky: What is “largely” complete?

April 2008 Mojo: Handhelds Rebuild Project

Feisty
source
packages

Modified
source
packages

Feisty
binary-i386
packages

Frisky
binary-arm
packages

main 2768 61 5099 4265 (85%)

restricted 5 0 33 0

universe 9596 1 15642 12081 (77%)

multiverse 399 0 595 0

Build time is ~4 days on native ARM cluster for Main, ~10 days for Universe

What happened to the source packages?

2120

323

276 49

Component “Main”

Fully built

Partially built

Failed to build

Wrong Architecture

April 2008 Mojo: Handhelds Rebuild Project

What have we modified?

Added one package

•  handhelds-keyring: For package signatures

Modified 61 packages:

•  Most are just a few lines of code fixing dependencies or ARM-specific
bugs

•  Five packages (tar, tzdata, gzip, coreutils, docbook2x) pulled from
later distributions to match glibc2.6

•  A few larger patches to work around ARM issues. E.g., qt-x11-free XML
parsing bug needed removal of ‘\n\r’ at end of .ui files.

April 2008 Mojo: Handhelds Rebuild Project

What packages haven’t built?

•  The ARM machines have trouble with large C++ libraries. GCC can
crash on the linking stage with an out-of-memory error (KDE is a
particular challenge)

•  We don’t have a Java or Mono for ARM

•  A number of math libraries depend on the g77 Fortran compiler

•  Documentation packages (they have remarkable dependencies)

April 2008 Mojo: Handhelds Rebuild Project

It’s a bit of a hobby to continue to patch
and fix packages to fill out the distribution

How can you try this out?

Option #1: Put it on your desktop in a virtual machine

•  A pre-built file system is available and works with the QEMU
VersatilePB emulator

•  The netboot installer “mostly” works and will allow a remote
installation of Frisky onto a clean filesystem.

Option #2: Use it on an existing device

•  N800 demonstration

April 2008 Mojo: Handhelds Rebuild Project

April 2008 Mojo: Handhelds Rebuild Project

Final thoughts: What we’re doing now

•  Automating the security and bug-fix feeds

•  Patching source packages that failed to build

•  Submitting patches back to Debian and Ubuntu

•  Starting up new distributions

•  Filling out the architecture

•  Fixing up the installers

•  …and using these distributions, of course…

http://mojo.handhelds.org

