
LEADING
COLLABORATION

IN THE ARM
ECOSYSTEM

Kernel analysis using eBPF

Daniel Thompson (and Leo Yan)

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Extending the Berkeley Packet Filter
● Historically Berkeley Packet Filter

provided a means to filter network
packets

○ If you ever used tcpdump you’ve probably
already used it

○ tcpdump host helios and \(hot or ace \)

● eBPF has extended BPF hugely:
○ Re-encoded and more expressive

opcodes
○ Multiple new hook points within the kernel

to attach eBPF programs to
○ Rich data structures to pass information

to/from kernel
○ C functional call interface (an eBPF

program can call kernel function)

Framework of eBPF

ply‘raw’
building BCC

eBPF
verifier

eBPF core eBPF map

arm /
aarch64

JIT
bpf_func

Program loading

Data transferring

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Using eBPF for debugging

Userspace Kernel

Program

Update data maps

foo_kern.c

Load program

Read data maps

foo_user.c

foo_kern.o

LLVM/clang

eBPF maps

eBPF bytecode

eBPF

JIT

kprobes/ftrace

Program working flow Data transferring flow

eBPF func

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Using eBPF for debugging - cont.
● eBPF program is written in C code and compiled to eBPF bytecode

○ LLVM/clang provides us a eBPF compiler (no support in gcc)

○ Direct code generation is also possible (or LLVM without clang)

● eBPF program is loaded inside eBPF virtual machine with sanity-checking
● eBPF program is "attached" to a designated code path in the kernel

○ eBPF in its traditional use case is attached to networking hooks allowing it to filter and classify
network traffic using (almost) arbitrarily complex programs

○ Furthermore, we can attach eBPF programs to tracepoints, kprobes, and perf events for
debugging the kernel and carrying out performance analysis.

● Kernel and user space typically use eBPF map; it is a generic data structure
well suited to transfer data from kernel to userspace

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Debugging with eBPF versus tracing
Tracing is very powerful but it can also be
cumbersome for whole system analysis due
to the volume of trace information generated.

Most developers end up writing programs to
summarize the trace.

eBPF allows us to write program to
summarize trace information without tracing.

Kernel trace
events

trace-cmd

Without eBPF

Buffers

Event
processing

Frequent kernel and user space
context switching

Kernel trace
events

Kernel
eBPF

program

With eBPF

User space
statistics
program

Huge buffer size to avoid
tracing data overflow

Seldom kernel and user space
context switching

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Introducing the VM
● Instruction set architecture (ISA)
● Verifier
● Maps
● Just-in-time compilation

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

eBPF bytecode instruction set architecture (ISA)

Uses a simple RISC-like instruction set. It
is intentionally easy to map eBPF
program to native instructions (especially
on RISC machines).

10 general purpose 64-bit registers and
one register for frame pointer, maps 1:1
to registers on many 64-bit architectures.

Every instruction is 64-bit, the eBPF
program can contain a maximum of 4096
instructions.

eBPF Register Description

R0 Return value from in-kernel function,
and exit value for eBPF program

R1 ~ R5 Arguments from eBPF program to
in-kernel function

R6 ~ R9 Callee saved registers that in-kernel
function will preserve

R10 Read-only frame pointer to access
stack

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Instruction encoding

Three instruction types:
ALU instructions
memory instructions
branch instructions

New BPF_CALL instruction made
it possible to call in-kernel
functions cheaply.

32 bits
immediate

16 bits
offset

4 bits
src

4 bits
dst

8 bits
opcode

LSBMSB

Opcode for arithmetic and jump instructions

4 bits
operation code

1 bit
source

3 bits
instruction class

Opcode for memory instructions

3 bits
mode

2 bits
size

3 bits
instruction class

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Just-in-time compilation (JIT)

eBPF
Register

Aarch64
Register

Description

R0 X7 Return value from in-kernel
function, and exit value for
eBPF program

R1 ~ R5 X0 ~ X4 Arguments from eBPF
program to in-kernel
function

R6 ~ R9 X19 ~ X22 Callee saved registers that
in-kernel function will
preserve

R10 X25 Read-only frame pointer to
access stack

Just-in-time (JIT) compiler translates eBPF
bytecode into a host system's assembly
code and speed up program execution. For
most opcodes there is a 1:1 mapping
between eBPF and AArch64 instructions.

ARM/ARM64 JIT is enabled by kernel config:
CONFIG_BPF_JIT.

ARM/ARM64 JIT complies with Procedure
Call Standard for the ARM® Architecture
(AAPCS) to map eBPF registers to machine
registers and build prologue/epilogue for
function entry and exit.

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Verifier
● eBPF programs are loaded from user space but will run in kernel space; the eBPF verifier

checks that the program is safe to run before invoking it
● Checks that the program license is GNU GPL and, for kprobes, also the kernel version
● Function call verification

○ Allows function calls from one bpf function to another
○ Only calls to known functions are allowed
○ Unresolved function calls and dynamic linking are not permitted

● Check that control flow graph of eBPF program is a directed acyclic graph
○ Used to disallow loops to ensure the program don’t cause the kernel to lock up
○ Detect unreachable instructions
○ Program terminates with BPF_EXIT instruction
○ All branch instructions except for BPF_EXIT or BPF_CALL instructions are within program

boundary

● Simulates execution of every instructions and observes the state change of registers and
stack

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Control flow graph (CFG) to detect loop

BPF_MOV64_REG(BPF_REG_1, BPF_REG_0)
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0)
BPF_MOV64_REG(BPF_REG_3, BPF_REG_0)
BPF_JMP_IMM(BPF_JA, 0, 0, -4)
BPF_EXIT_INSN()

Example 1: detect back edge for loop.

BPF_MOV64_REG(BPF_REG_1, BPF_REG_0)
BPF_MOV64_REG(BPF_REG_2, BPF_REG_0)
BPF_MOV64_REG(BPF_REG_3, BPF_REG_0)
BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, -3)
BPF_EXIT_INSN()

Example 2: detect back edge for conditional loop.

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

The state change of registers and stack

The verifier tracks register state and monitors the
usage for stack:

● Registers with uninitialized contents cannot be read.
● After a kernel function call, R1-R5 are reset to

unreadable and R0 has a return type of the function.
● Since R6-R9 are callee saved, their state is

preserved across the call.
● load/store instructions are allowed only with

registers of valid types, which are PTR_TO_CTX,
PTR_TO_MAP, PTR_TO_STACK and verify if out of
bound.

● Allow eBPF program to read data from stack only if
it wrote into it.

BPF_MOV64_REG(BPF_REG_2, BPF_REG_10)
BPF_LDX_MEM(BPF_DW, BPF_REG_0,
BPF_REG_2, -8)
BPF_EXIT_INSN()

BPF_MOV64_REG(BPF_REG_0, BPF_REG_2)
BPF_EXIT_INSN()

Example 1: Registers with uninitialized
contents cannot be read.

Example 2: Allow eBPF program to read
data from stack only after it wrote into it.

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Maps
● eBPF uses map as generic key/value data structure for data transfer

between Kernel and user space
● The maps are managed by using file descriptor and they are accessed from

user space via BPF syscall:
○ bpf(BPF_MAP_CREATE, attr, size): create a map with given type and attributes
○ bpf(BPF_MAP_LOOKUP_ELEM, attr, size): lookup key in a given map
○ bpf(BPF_MAP_UPDATE_ELEM, attr, size): create or update key/value pair in a given map
○ bpf(BPF_MAP_DELETE_ELEM, attr, size): find and delete element by key in a given map
○ close(fd): delete map

● eBPF programs can use map file descriptors of the process that loaded the
program.

● When the userspace generates an eBPF program the file descriptors will
embedded into immediate values of the appropriate opcode.

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Access map in Kernel space

fd 0 P DST
BPF_LD |
BPF_DW |
BPF_IMM

0 0 0 0 0

opcodedstsrcoffimm

The ‘imm’ field is set to file descriptor and ‘src’ field =
BPF_PSEUDO_MAP_FD to indicate this is a pseudo instruction
for loading map data. BPF_LD_MAP_FD() macro is used for
instruction assembly. Because ‘src’ is non-zero so the
opcode is invalid at this stage.

Map accessing instruction opcode is ‘BPF_LD | BPF_DW |
BPF_IMM’, which means "load 64-bit (Double Word)
immediate"; the instruction is to combine the two ‘imm’ fields
of this instruction and the subsequent one for ‘DST’ register.

map 0 0 DST
BPF_LD |
BPF_DW |
BPF_IMM

map >> 32 0 0 0 0

opcodedstsrcoffimm

The invalid opcode is fixed up during programing loading
bpf_prog_load(). At this stage the ‘fd’ will be replaced
with a map pointer that can be used as an argument during a
BPF_CALL.

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Coding for eBPF in assembler
● Before introducing the high level tools let’s look at a

simple userspace program (in C) that runs an eBPF
program

● It is not very common to write eBPF programs in
assembler

○ Writing in assembler allows us to explore the syscalls that hold
everything together

○ We’ll look at the higher level tools in a moment

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

libbpf: helper functions for eBPF
libbpf library makes easier to write eBPF programs,
which includes helper functions for loading eBPF
programs from kernel space to user space and
creating and manipulating eBPF maps:

● User program reads the eBPF bytecode into a
buffer and pass it to bpf_load_program()
for program loading and verification.

● The eBPF program includes the libbpf header
for the function definition for building, when run
by the kernel, will call
bpf_map_lookup_elem() to find an element
in a map and store a new value in it.

● The user application calls
bpf_map_lookup_elem() to read out the
value stored by the eBPF program in the kernel.

int bpf_map_lookup_elem(int fd, const void *key,
 void *value)
{
 union bpf_attr attr;

 bzero(&attr, sizeof(attr));
 attr.map_fd = fd;
 attr.key = ptr_to_u64(key);
 attr.value = ptr_to_u64(value);

 return sys_bpf(BPF_MAP_LOOKUP_ELEM, &attr,
 sizeof(attr));
}

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Coding for eBPF in assembler
The example is ~50 lines of code for eBPF
in assembler; it demonstrates the eBPF
code have components: eBPF bytecode,
syscalls, maps.

attach_kprobe() is used to enable
kprobe event and attach the event with
eBPF program.

void attach_kprobe(void)
{
 system("echo 'p:sys_read sys_read' >> \
 /sys/kernel/debug/tracing/kprobe_events")

 efd = open(“/sys/kernel/debug/tracing/events/kprobes/sys_read/id”,
 O_RDONLY, 0);
 read(efd, buf, sizeof(buf));
 close(efd);

 buf[err] = 0;
 id = atoi(buf);
 attr.config = id;

 efd = sys_perf_event_open(&attr, -1/*pid*/, 0/*cpu*/, -1, 0);
 ioctl(efd, PERF_EVENT_IOC_ENABLE, 0);
 ioctl(efd, PERF_EVENT_IOC_SET_BPF, pfd);
}

int main(void)

{

 int map_fd, i, key;

 long long value = 0, cnt;

 map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(key), sizeof(value), 5000, 0);

 struct bpf_insn prog[] = {

 BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),

 BPF_MOV64_IMM(BPF_REG_0, 0), /* r0 = 0 */

 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -4), /* *(u32 *)(fp - 4) = r0 */

 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),

 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), /* r2 = fp - 4 */

 BPF_LD_MAP_FD(BPF_REG_1, map_fd),

 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),

 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),

 BPF_MOV64_IMM(BPF_REG_1, 1), /* r1 = 1 */

 BPF_RAW_INSN(BPF_STX | BPF_XADD | BPF_DW, BPF_REG_0, BPF_REG_1, 0, 0), /* xadd r0 += r1 */

 BPF_MOV64_IMM(BPF_REG_0, 0), /* r0 = 0 */

 BPF_EXIT_INSN(),

 };

 size_t insns_cnt = sizeof(prog) / sizeof(struct bpf_insn);

 pfd = bpf_load_program(BPF_PROG_TYPE_KPROBE, prog, insns_cnt, "GPL",

 LINUX_VERSION_CODE, bpf_log_buf, BPF_LOG_BUF_SIZE);

 attach_kprobe();

 sleep(1);

 key = 0;

 assert(bpf_map_lookup_elem(map_fd, &key, &cnt) == 0);

 printf("sys_read counts %lld\n", cnt);

 return 0;

}

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

eBPF tooling
● Kernel examples
● Ply
● bcc
● SystemTap (stapbpf)
● ...

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Kernel samples
It’s good to start from eBPF kernel samples; Linux kernel tree
provides eBPF system call wrapper functions in lib libbpf; the
samples use bpf_load.c to create map and load kernel
program, attach trace point.

Kernel and user space programs use the naming convention
xxx_user.c and xxx_kern.c, and the user space program to
use file name xxx_kern.o to search kernel program.

The user space program is compiled by GCC for executable file
and it reacts for ‘CROSS_COMPILE=aarch64-linux-gnu-’ for
cross compiling. Kernel program is compiled by LLVM/Clang, by
default it uses LLVM/Clang in distro and can specify path for
new built LLVM/Clang. Build commands:
make headers_install # creates "usr/include" directory in the build top directory

make samples/bpf/ LLC=xxx/llc CLANG=xxx/clang

sample_kern.o

sample_user.o

libbpf

bpf_load.o

sample

Kernel
program

Program loading

Data
transferring

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Sample code: trace kmem_cache_alloc_node

struct bpf_map_def SEC("maps") my_map = {
 .type = BPF_MAP_TYPE_HASH,
 .key_size = sizeof(long),
 .value_size = sizeof(struct pair),
 .max_entries = 1000000,
};

SEC("kretprobe/kmem_cache_alloc_node")
int bpf_prog2(struct pt_regs *ctx)
{
 long ptr = PT_REGS_RC(ctx);
 long ip = 0;

 /* get ip address of kmem_cache_alloc_node() caller */
 BPF_KRETPROBE_READ_RET_IP(ip, ctx);

 struct pair v = {
 .val = bpf_ktime_get_ns(),
 .ip = ip,
 };

 bpf_map_update_elem(&my_map, &ptr, &v, BPF_ANY);
 return 0;
}
char _license[] SEC("license") = "GPL";
u32 _version SEC("version") = LINUX_VERSION_CODE;

static void print_old_objects(int fd)
{
 long long val = time_get_ns();
 __u64 key, next_key;
 struct pair v;

 /* Based on current ‘key’ value, we can get next key value
 * and iterate all bpf map elements. */
 key = -1;
 while (bpf_map_get_next_key(map_fd[0], &key, &next_key) == 0) {
 bpf_map_lookup_elem(map_fd[0], &next_key, &v);
 key = next_key;
 printf("obj 0x%llx is %2lldsec old was allocated at ip %llx\n",
 next_key, (val - v.val) / 1000000000ll, v.ip);
 }
}

int main(int ac, char **argv)
{
 char filename[256];
 int i;

 snprintf(filename, sizeof(filename), "%s_kern.o", argv[0]);

 if (load_bpf_file(filename)) {
 printf("%s", bpf_log_buf);
 return 1;
 }

 for (i = 0; ; i++) {
 print_old_objects(map_fd[1]);
 sleep(1);
 }

 return 0;
}

tracex4_user.ctracex4_kern.c

Step 1: load kernel program &
enable kretprobe trace point

Step 2: kernel program
update map data

Step 3: user space program
reads map data

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Ply: light dynamic tracer for eBPF

Ply uses an awk-like mini language describing how
to attach eBPF programs to tracepoints and
kprobes. It has a built-in compiler and can perform
compilation and execution with a single command.

Ply can extract arbitrary data, i.e register values,
function arguments, stack/heap data, stack traces.

Ply keeps dependencies to a minimum, leaving libc
as the only runtime dependency. Thus, ply is well
suited for embedded targets.

https://wkz.github.io/ply/

trace:raw_syscalls/sys_exit / (ret() < 0) /
{
 @[comm()].count()
}

^Cde-activating probes

@:
dbus-daemon 2
ply 3
irqbalance 4

https://wkz.github.io/ply/
https://wkz.github.io/ply/

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

System call (sys_exit) failure statistics in ply

trace:raw_syscalls/sys_exit / (ret() < 0) /
{
 @[comm()].count()
}

^Cde-activating probes

@:
dbus-daemon 2
ply 3
irqbalance 4

predicate: filter events to match criteria

probe definition: the point(s) of instrumentation

provider: selects which probe interface to use

@: sign of map

Key value

method: common way is to aggregate data using methods, have two
functions: .count() and .quantize()

Tracing result: task name + counts

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Build ply
If applicable, please check build: Fix kernel header installation on ARM64 is in
your repository before building.

Method 1: Native compilation
 ./autogen.sh
 ./configure --with-kerneldir=/path/to/linux
 make
 make install

Method 2: Cross-Compilation for arm64

 ./autogen.sh
 ./configure --host=aarch64 --with-kerneldir=/path/to/linux
 make CC=aarch64-linux-gnu-gcc
 # copy src/ply to target board

https://github.com/iovisor/ply

$ ldd src/ply
linux-vdso.so.1 (0x0000ffff9320d000)
libc.so.6 =>
/lib/aarch64-linux-gnu/libc.so.6
(0x0000ffff93028000)
/lib/ld-linux-aarch64.so.1
(0x0000ffff931e2000)

https://github.com/iovisor/ply/pull/42/commits/74fda9a5ee48ad7e356318ff2584ed6cd6c7b5d1
https://github.com/iovisor/ply
https://github.com/iovisor/ply

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

BPF Compiler Collection (BCC)
BPF compiler collection (BCC) project is a toolchain
which reduces the difficulty for writing, compiling
(invokes LLVM/Clang) and loading eBPF programs.
BCC reports errors for mistake for compiling, loading
program, etc; this reduces difficulty for eBPF
programming.

For writing short and expressive programs, high-level
languages are available in BCC (python, Lua, go, etc).

BCC provides scripts that use User Statically-Defined
Tracing (USDT) probes to place tracepoints in
user-space code; these are probes that are inserted into
user applications statically at compile-time.

BCC includes an impressive collection of examples and
ready-to-use tracing tools.

User space Kernel

Python

Lua

Front-end
libbcc.so

libbpf.so

Back-end

eBPF maps

eBPF
bytecode

eBPF

kprobes/
ftrace

C / C++

golang

bcc-tool

LLVM/
clangCompiling

Load program & read data

Trace and probe ops

BPF Compiler Collection (BCC)

Program working flow

Data transferring flow

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

BCC example code
b = BPF(text="""

struct key_t {
 u32 prev_pid, curr_pid;
};

BPF_HASH(stats, struct key_t, u64, 1024);
int count_sched(struct pt_regs *ctx, struct task_struct *prev) {
 struct key_t key = {};
 u64 zero = 0, *val;

 key.curr_pid = bpf_get_current_pid_tgid();
 key.prev_pid = prev->pid;

 val = stats.lookup_or_init(&key, &zero);
 (*val)++;
 return 0;
}
""")

b.attach_kprobe(event="finish_task_switch", fn_name="count_sched")

generate many schedule events

for i in range(0, 100): sleep(0.01)

for k, v in b["stats"].items():
 print("task_switch[%5d->%5d]=%u" % (k.prev_pid, k.curr_pid, v.value))

Kernel program

Enable kprobe event

Read map data “stats”

https://github.com/iovisor/bcc/blob/master/examples/tracing/task_switch.py

https://github.com/iovisor/bcc/blob/master/examples/tracing/task_switch.py
https://github.com/iovisor/bcc/blob/master/examples/tracing/task_switch.py

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Build BCC
BCC runs on the target but cannot be easily
cross-compiled. These instructions show how to
perform a native build (and work on an AArch64
platform)

Install build dependencies

sudo apt-get install debhelper cmake libelf-dev bison
flex libedit-dev python python-netaddr python-pyroute2
arping iperf netperf ethtool devscripts zlib1g-dev
libfl-dev

Build luajit lib

git clone http://luajit.org/git/luajit-2.0.git
cd luajit-2.0
git checkout -b v2.1 origin/v2.1
make
sudo make install

Build LLVM/Clang

cd where-llvm-live
svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm
cd where-llvm-live
cd llvm/tools
svn co http://llvm.org/svn/llvm-project/cfe/trunk clang
cd where-llvm-live
mkdir build (in-tree build is not supported)
cd build
cmake -G "Unix Makefiles" \

-DCMAKE_INSTALL_PREFIX=$PWD/install ../llvm
make; make install

Build BCC

Use self built LLVM/clang binaries
export PATH=where-llvm-live/build/install/bin:$PATH

git clone https://github.com/iovisor/bcc.git
mkdir bcc/build; cd bcc/build
cmake .. -DCMAKE_INSTALL_PREFIX=/usr
make
sudo make install

https://github.com/iovisor/bcc/blob/master/INSTALL.md

http://luajit.org/git/luajit-2.0.git
http://llvm.org/svn/llvm-project/llvm/trunk
http://llvm.org/svn/llvm-project/cfe/trunk
https://github.com/iovisor/bcc.git
https://github.com/iovisor/bcc/blob/master/INSTALL.md

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

BCC and embedded systems
● BCC native build has many dependencies

○ Dependency with libs and binaries, e.g. cmake, luajit lib, etc
○ Most dependencies can be resolved for Debian/Ubuntu by using ‘apt-get’ command
○ BCC depends on LLVM/Clang to compile for eBPF bytecode, but LLVM/Clang itself also

introduces many dependencies
● BCC and LLVM building requires powerful hardware

○ Have big pressure for both memory and filesystem space
○ Building is impossible or, with swap, extremely slow on systems without sufficient memory
○ Consumes lots of disk space. For AArch64: BCC needs 12GB, additionally LLVM needs 42GB
○ Even with strong hardware, the compilation process takes a long time
○ Save LLVM and BCC binaries on PC and use them by mounting NFS node :)

● Difficult to deploy BCC on Android system
○ No package manager means almost all library dependencies must be compiled from scratch
○ Android uses bionic C library, which makes it difficult to build libraries that use GNU

extensions
○ androdeb: https://github.com/joelagnel/adeb

https://github.com/joelagnel/adeb

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

SystemTap - eBPF backend
● SystemTap introduced, stapbpf, an

eBPF backend in Oct, 2017
○ Joins existing backends:

kernel module and Dyninst

● SystemTap is both the tool and the
scripting language

○ Language is inspired by awk, and
predecessor tracers such as DTrace…

○ Uses the familar awk-like structure:
 probe.point { action(s) }

○ Extracts symbolic information based on
DWARF parsing

stap --runtime=bpf -v - <<EOF
> probe kernel.function("ksys_read") {
> printf("ksys_read(%d): %d, %d\n",
> pid(), $fd, $count);
> exit();
> }
> EOF
Pass 1: parsed user script and 61 library
scripts using
410728virt/101984res/8796shr/93148data kb, in
260usr/20sys/272real ms.
Pass 2: analyzed script: 1 probe, 2 functions,
0 embeds, 0 globals using
468796virt/161004res/9684shr/151216data kb, in
820usr/10sys/843real ms.
Pass 4: compiled BPF into "stap_10960.bo" in
10usr/0sys/33real ms.
Pass 5: starting run.
ksys_read(18719): 0, 8191
Pass 5: run completed in 0usr/0sys/30real ms.

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

SystemTap - Revenge of the verifier
● eBPF verifier is more aggressive than the SystemTap language

○ Language permits looping but verifier prohibits loops (3.2 did not implement loop unrolling to
compensate)

○ The 4096 opcode limit restriction also looms
○ $$vars and $$locals cause verification failure if used (likely depends on traced function)
○ This runtime is in an early stage of development and it currently lacks support for a number of

features available in the default runtime. -- STAPBPF(8)

● SystemTap has a rich library of useful tested examples and war stories
○ Almost all are tested and developed using the kernel module backend
○ Thus it common to find canned examples that only work with the kernel module backend
○ This quickly grows frustrating… so one tends to end up using the default backend

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

BPFtrace - high level tracing language for eBPF
HOLD THE PRESS… HOLD THE PRESS...

BPFtrace language is inspired by awk and C, and predecessor tracers such as DTrace and SystemTap.
Brendan Gregg’s blogged about it: bpftrace (DTrace 2.0) for Linux 2018 (and most of this slide comes from
that blog post). I picked up from lwn.net (many thanks) three days before my slides were due in ;-)

“Created by Alastair Robertson, bpftrace is an
open source high-level tracing front-end that
lets you analyze systems in custom ways. It's
shaping up to be a DTrace version 2.0: more
capable, and built from the ground up for the

modern era of the eBPF virtual machine.”
-- Brendan Gregg

cat > path.bt <<EOF
#include <linux/path.h>
#include <linux/dcache.h>

kprobe:vfs_open
{
 printf("open path: %s\n",
 str(((path *)arg0)->dentry->d_name.name));
}
EOF
bpftrace path.bt
Attaching 1 probe...
open path: dev
open path: if_inet6
open path: retrans_time_ms

http://www.brendangregg.com/blog/2018-10-08/dtrace-for-linux-2018.html

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

BPFtrace - Internals
Good news:
bpftrace has
superpowers

Bad news:
Dependencies

are inconsistently
packaged

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Examples
● Report CPU power state
● Who is hammering a library function?
● Hunting leaks
● Debug kernel functions at the runtime

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

The story - Report CPU power state

When I run one test case, I want to quickly
do statistics for CPU frequency so I can get
to know if CPU frequency can meet the
performance requirement or not.

We can do this with ‘offline’ mode like
idlestat tool, but is there any method that can
display live info?

● The target is to use high efficient method to
count CPU frequency duration time.

● Kernel has existing trace points to record CPU
frequency, eBPF kernel program can finish
simple computation for CPU frequency state
duration based on these trace points.

● Need to get rid of CPU idle duration from CPU
frequency time.

● In this example we use tools from the kernel
samples/bpf/ directory.

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

CPU power state statistics with eBPF

T2
T4

WFI

T1

T3

CPU_OFF

OPP0

OPP1 T(pstate-0) += T1
T(pstate-1) += T3
T(cstate-0) += T2
T(cstate-1) += T4

Kernel program

User space program
 CPU states statistics:
 state(ms) cstate-0 cstate-1 cstate-2 pstate-0 pstate-1 pstate-2 pstate-3 pstate-4
 CPU-0 767 6111 111863 561 31 756 853 190
 CPU-1 241 10606 107956 484 125 646 990 85
 CPU-2 413 19721 98735 636 84 696 757 89
 CPU-3 84 11711 79989 17516 909 4811 5773 341
 CPU-4 152 19610 98229 444 53 649 708 1283
 CPU-5 185 8781 108697 666 91 671 677 1365
 CPU-6 157 21964 95825 581 67 566 684 1284
 CPU-7 125 15238 102704 398 20 665 786 1197

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

The story - Who is hammering a library function?

I did a quick profile and its showing a library
function dominating one of the cores.
What now?

ply -t 5 -c ‘kprobe:kmem_cache_alloc_node
 { @[stack()].count() }’
 …

kmem_cache_alloc_node
_do_fork+0xd0
__se_sys_clone+0x4c
el0_svc_naked+0x30 31

kmem_cache_alloc_node
alloc_skb_with_frags+0x70
sock_alloc_send_pskb+0x220
unix_stream_sendmsg+0x1f4
sock_sendmsg+0x60
__sys_sendto+0xd4
__se_sys_sendto+0x50
__sys_trace_return 232

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

The story - Hunting leaks

I know I’m leaking memory (or some other
precious resource) from a particular pool
whenever I run a particular workload.
Unfortunately my system is almost ready to
ship and we’ve started disabling all the
resource tracking. Is there anything I can do
to get a clue about what is going on?

cat track.ply
kprobe:kmem_cache_alloc_node {

Can’t read stack from a retprobe :-(
@[0] = stack();

}
kretprobe:kmem_cache_alloc_node {

@[retval()] = @[0];
@[0] = nil;

}
kprobe:kmem_cache_free {

@[arg(1)] = nil;
}
ply -t 1 track.ply
3 probes active
de-activating probes

@:
<leaks show up here>

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

The story - Debug kernel functions at the runtime

When I debug CPU frequency change flow
in kernel, kernel have several different
components to work together for frequency
changing, including clock driver, mailbox
driver, etc.

I want to confirm if the functions have been
properly called and furthermore to check
function arguments have expected values.

How can I dynamically debug kernel
functions at the runtime with high efficiency
and safe method?

● SystemTap and Kprobes can be used to debug
kernel function, but eBPF is safer to deploy
because the verifier will ensure kernel integrity.

● For kernel functions tracing, eBPF can avoid to
change kernel code and save time for
compilation.

● If it’s safe enough, we even can use it in
production for customer support.

● In this example, we use tools from the bcc
distribution

Inspired by: BPF: Tracing and More (Brendan Gregg)

https://www.youtube.com/watch?v=JRFNIKUROPE

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Debug kernel functions

$./tools/trace.py 'hi3660_stub_clk_set_rate "rate: %d" arg2'
PID TID COMM FUNC -
2002 2002 kworker/3:2 hi3660_stub_clk_set_rate rate: 1421000000
2469 2469 kworker/3:1 hi3660_stub_clk_set_rate rate: 1421000000
2469 2469 kworker/3:1 hi3660_stub_clk_set_rate rate: 1421000000
84 84 kworker/0:1 hi3660_stub_clk_set_rate rate: 903000000
2469 2469 kworker/3:1 hi3660_stub_clk_set_rate rate: 903000000
84 84 kworker/0:1 hi3660_stub_clk_set_rate rate: 903000000
84 84 kworker/0:1 hi3660_stub_clk_set_rate rate: 903000000
2469 2469 kworker/3:1 hi3660_stub_clk_set_rate rate: 903000000

BCC tools/trace.py can
be used to debug kernel function; this
tool can trace function with infos:
kernel or user space stack, timestamp,
CPU ID, PID/TID.

We can use tool trace.py to confirm
function hi3660_stub_clk_set_rate()
has been invoked and print out the
target frequency.

static int hi3660_stub_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 unsigned long parent_rate)

{
struct hi3660_stub_clk *stub_clk = to_stub_clk(hw);

stub_clk->msg[0] = stub_clk->cmd;
stub_clk->msg[1] = rate / MHZ;

mbox_send_message(stub_clk_chan.mbox, stub_clk->msg);
mbox_client_txdone(stub_clk_chan.mbox, 0);

stub_clk->rate = rate;
return 0;

}

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Debug kernel functions - cont.
static int hi3660_mbox_send_data(struct mbox_chan *chan, void *msg)
{

[...]

/* Fill message data */
for (i = 0; i < MBOX_MSG_LEN; i++)

writel_relaxed(buf[i], base + MBOX_DATA_REG + i * 4);

/* Trigger data transferring */
writel(BIT(mchan->ack_irq), base + MBOX_SEND_REG);
return 0;

}

$./tools/trace.py 'hi3660_mbox_send_data(struct mbox_chan *chan, void *msg)
"msg_id: 0x%x rate: %d", *((unsigned int *)msg), *((unsigned int *)msg + 1)'

PID TID COMM FUNC -
84 84 kworker/0:1 hi3660_mbox_send_data msg_id: 0x2030a rate: 903
2413 2413 kworker/1:0 hi3660_mbox_send_data msg_id: 0x2030a rate: 903
2413 2413 kworker/1:0 hi3660_mbox_send_data msg_id: 0x2030a rate: 903

We can continue to check program flow
from high level function to low level
function for arguments, and BCC
supports C style sentence to print out
more complex data structure.

These data “watch points” can easily
help us to locate the issue happens in
which component.

For left example, we can observe the
msg_id value to check if pass correct
message ID to MCU firmware.

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Statistics based on function arguments
After the kernel functionality has
been validated, we can continue to
do simple profiling based on Kernel
function argument statistics.

Using the argdist.py invocation
below, we can observe the the CPI
frequency mostly changes to
533MHz and 1844MHz.

static int hi3660_stub_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 unsigned long parent_rate)

{
struct hi3660_stub_clk *stub_clk = to_stub_clk(hw);

stub_clk->msg[0] = stub_clk->cmd;
stub_clk->msg[1] = rate / MHZ;

mbox_send_message(stub_clk_chan.mbox, stub_clk->msg);
mbox_client_txdone(stub_clk_chan.mbox, 0);

stub_clk->rate = rate;
return 0;

}

$ tools/argdist.py -I 'linux-mainline/include/linux/clk-provider.h'
 -c -C 'p::hi3660_stub_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate):u64:rate'

COUNT EVENT
1 rate = 903000000
1 rate = 2362000000
1 rate = 999000000
27 rate = 1844000000
31 rate = 533000000

LEADING COLLABORATION
IN THE ARM ECOSYSTEM

Summary (and thank you)

Hand-rolled
Asm Hack value?
Pure C No “magic”, great examples in kernel

Awk-like
Ply Easy to deploy esp. on embedded system
SystemTap DWARF parsing (and wait a bit?)
BPFtrace #include <linux/dentry.h>

BCC Great tool for tool makers
(and running tools from tool makers)

Everything is awesome…

… and many, many thanks to
all the people who have

worked to make it so!

support@linaro.org

mailto:support@linaro.org

