
Embedded Linux Conference 2014

Two years of ARM
SoC support
mainlining: lessons
learned

Thomas Petazzoni
Free Electrons
thomas.petazzoni@free-electrons.com

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 1/41



Thomas Petazzoni

I CTO and Embedded Linux engineer at Free Electrons
I Embedded Linux development: kernel and driver

development, system integration, boot time and power
consumption optimization, consulting, etc.

I Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

I http://free-electrons.com

I Contributions
I Kernel support for the Marvell Armada ARM SoCs from

Marvell
I Major contributor to Buildroot, an open-source, simple and

fast embedded Linux build system

I Living in Toulouse, south west of France

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 2/41

http://free-electrons.com


Context

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 3/41



Process

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 4/41



Timeline (1)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 5/41



Timeline (2)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 6/41



Lesson #0
Submit early

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 7/41



Submit early

I Release early, release often

I Translated into the kernel contributor position: submit early

I You will make incorrect choices in your patches

I The only solution to know it is to post them and get reviews
and comments

I On several occasions, we had too much internal discussions
and reviews before posting, and we wasted too much time.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 8/41



Lesson #1
Engage with the community

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 9/41



Community

I Really embrace the power of the community
I Test linux-next and -rc

I Allows to find regressions early, and make sure your platform
support is in a minimally working state at all times.

I Much better than big jumps every 2/3 years!

I Provide boards for the ARM board farm
I Talk with Kevin Hilman and Olof Johansson
I Gets the latest mainline and linux-next built and booted on

your platform every day!

I Create a good relationship with your sub-architecture
maintainer, and possibly other maintainers.

I They are the key to getting your patches merged.
I Attend conferences, and plan a beer/drink budget.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 10/41



Lesson #2
Encourage community

contributions

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 11/41



Community contributions

I While the community may not necessarily work on “big”
features, people can help dramatically in areas like:
debugging, bug fixing, performance optimizations, etc.

I Provide boards and datasheets to a good selection of
people, and they will solve problems

I Unfortunately Marvell still doesn’t provide public datasheets
for Armada 370/XP

I Provide those contributors support/assistance.
I Examples:

I Willy Tarreau debugged and fixed a major performance issue in
the Armada 370/XP network driver.

I Neil Greatorex, Jason Gunthorpe and Willy Tarreau
investigated and fixed a number of PCIe related issues.

I Help solving communication issues: special PCI terminology
I Quick build fixes

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 12/41



Lesson #3
Review patches from others

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 13/41



Review patches from others

I Review patch from other developers. Not the ones in your
company, people from other companies.

I Doing this helps the maintainers

I Shows that you care about the community and understand
how it works

I Of course, do it wisely, and don’t do stupid reviews!
I Ezequiel’s evil plan

I Statistically speaking, you can speed-up your own reviewing
process by reviewing other patches on the same queue

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 14/41



Lesson #4
Assign dedicated engineering

resources

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 15/41



Engineering resources

I Mainlining is a time consuming process
I Have a small team of engineers fully dedicated to mainlining.

I Keep the team small and efficient, throwing more people will
not necessarily make things go faster.

I Half of the work is technical, half of the work is social.

I Make sure this small team has easy access to other engineers
with deep knowledge of the hardware.

I The datasheet often isn’t enough.

I The engineers need to be able to reply quickly to
community comments and requests.

I Otherwise the community won’t trust that you will fix issue
and maintain the code moving forward.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 16/41



Lesson #5
Take into account older SOCs

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 17/41



Take into account existing code

I Yes, you want to push the support for your new SoC /
hardware right now

I But nothing upsets more the community than neglecting
existing hardware support in the kernel.

I In our case:
I We wanted to push the support for Armada 370/XP, sharing a

lot of HW blocks with previous SOCs
I We had to take into account Kirkwood, Discovery, Orion5x

and Dove when doing changes to core drivers (pinctrl, clock,
mbus, PCIe, etc.)

I Help of the community is key here!

I If you care today for older code, you will care tomorrow for
code you’re submitting today.

I Also avoids carrying legacy code in your platform.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 18/41



Lesson #6
Code re-use actually work

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 19/41



Code re-use actually work

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 20/41



Code re-use actually work

I Two successive groups of SOCs:

1. Armada 370/XP
2. Armada 375/38x

I Many drivers pre-existed from the Kirkwood/Orion era, and
we could re-use them with just a DT binding addition.

I Lot of work done Armada 370/XP: writing (hopefully) good
Device Tree bindings, proper pinctrl, clock, irqchip drivers, etc.

I Paid off when Armada 375/38x were introduced: all the
identical HW blocks were enabled really quickly.

I Mainlining is a long term investment, but it pays off,
especially if you have related SoCs.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 21/41



Lesson #7
Adopt the new code

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 22/41



Adopt the new code

I The SoC vendor should really adopt the code that has been
mainlined.

I There is a big risk of a split between:
I the SoC vendor custom BSP: ugly code, but lots of QA
I mainline: beautiful code, but poor QA

I In our case, mainlining effort from 3.6 to 3.12, Marvell
adopted 3.10 + several backports early January 2014

I It was already too late: when they started testing, we
discovered several issues thanks to their stronger QA effort.

I Also, a split means that there is a duplicated debugging effort.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 23/41



Lesson #8
Realize there is a culture

difference

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 24/41



Culture difference

I Initially, surprised by the need of a third-party to mainline
Marvell SOCs: Marvell has highly skilled engineers

I However, the mainlining process is not (only?) about
making code work

I It’s about
I Making code pretty: use the appropriate subsystems, don’t

hack core code in a non-generic way
I Caring about other platforms
I Understanding how the social interactions with maintainers

and the community work

I As said earlier: half technical, half social

I Need people having both an understanding of the community,
and technical expertise. They may not be the deepest
technical experts, but they know how to create the interface
with the community.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 25/41



Lesson #9
Know how to schedule patch

submission

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 26/41



Patch submission timeline

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 27/41



Patch submission scheduling

I The maintainers/community has a bounded absorption rate

I Don’t send too many patches/features during the same
cycle

I Complex things posted way before the cycle starts, and
be almost in the final stages when the -rc1 of the previous
cycle is released.

I You’re always two releases ahead: version X has just been
released, your stuff for release X+1 should be ready since some
time, and your active development is for X+2

I During a cycle, you typically
I Post the final versions of your patches for X+1, do the

remaining polishing and quick iterations to review/comments.
I Develop the features for X+2, post RFC-level patch series.

I Accelerate patch submission as you approach merging.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 28/41



Lesson #10
Merging special DT bindings is

hard

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 29/41



Special DT bindings

I Bindings for simple, normal devices, are usually relatively easy
to get merged.

I Binding for more complex devices, or busses, require much
more discussion

I Armada 370/XP was the first ARM platform to merge a PCI
host controller driver with a DT binding.

I Initial patch proposed on December 7th, 2012.
I 10 iterations until May 16th, 2013.
I Finally released as part of 3.11, September 2013.

I Similar story for mvebu-mbus, the driver for the flexible MBus
Marvell bus.

I Be patient, take comments into consideration, explain how
your hardware works.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 30/41



Special DT bindings

pcie-controller {
compatible = "marvell,armada-xp-pcie";
#address-cells = <3>;
#size-cells = <2>;
msi-parent = <&mpic>;
bus-range = <0x00 0xff>;
ranges =

<0x82000000 0 0x40000 MBUS_ID(0xf0, 0x01) 0x40000 0 0x00002000 /* Port 0.0 registers */
0x82000000 0 0x42000 MBUS_ID(0xf0, 0x01) 0x42000 0 0x00002000 /* Port 2.0 registers */
0x82000000 0 0x44000 MBUS_ID(0xf0, 0x01) 0x44000 0 0x00002000 /* Port 0.1 registers */
0x82000000 0 0x48000 MBUS_ID(0xf0, 0x01) 0x48000 0 0x00002000 /* Port 0.2 registers */
0x82000000 0 0x4c000 MBUS_ID(0xf0, 0x01) 0x4c000 0 0x00002000 /* Port 0.3 registers */
0x82000000 0 0x80000 MBUS_ID(0xf0, 0x01) 0x80000 0 0x00002000 /* Port 1.0 registers */
0x82000000 0 0x82000 MBUS_ID(0xf0, 0x01) 0x82000 0 0x00002000 /* Port 3.0 registers */
[...]
0x82000000 0x1 0 MBUS_ID(0x04, 0xe8) 0 1 0 /* Port 0.0 MEM */
0x81000000 0x1 0 MBUS_ID(0x04, 0xe0) 0 1 0 /* Port 0.0 IO */
0x82000000 0x2 0 MBUS_ID(0x04, 0xd8) 0 1 0 /* Port 0.1 MEM */
0x81000000 0x2 0 MBUS_ID(0x04, 0xd0) 0 1 0 /* Port 0.1 IO */
0x82000000 0x3 0 MBUS_ID(0x04, 0xb8) 0 1 0 /* Port 0.2 MEM */
0x81000000 0x3 0 MBUS_ID(0x04, 0xb0) 0 1 0 /* Port 0.2 IO */
0x82000000 0x4 0 MBUS_ID(0x04, 0x78) 0 1 0 /* Port 0.3 MEM */
0x81000000 0x4 0 MBUS_ID(0x04, 0x70) 0 1 0 /* Port 0.3 IO */
[...]

pcie@1,0 {
device_type = "pci";
assigned-addresses = <0x82000800 0 0x40000 0 0x2000>;
reg = <0x0800 0 0 0 0>;
#address-cells = <3>;
#size-cells = <2>;
#interrupt-cells = <1>;
ranges = <0x82000000 0 0 0x82000000 0x1 0 1 0

0x81000000 0 0 0x81000000 0x1 0 1 0>;
interrupt-map-mask = <0 0 0 0>;
interrupt-map = <0 0 0 0 &mpic 58>;
marvell,pcie-port = <0>;
marvell,pcie-lane = <0>;
clocks = <&gateclk 5>;
status = "disabled";

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 31/41



Lesson #11
Keeping DT stability is hard

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 32/41



Keeping DT stability is hard

I Some hardware blocks have well-defined functions and
boundaries, generally for devices

I But some hardware blocks have less well-defined boundaries,
generally core components (clocks, power management, etc.)

I The need for stable DT bindings pretty much requires a
complete understanding of how all the hardware works...

I ... which goes a bit against the principle of iterative
development.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 33/41



Keeping DT stability is hard: example (1)

I For SMP enabling on Armada XP, we needed to fiddle with an
unit called the PMSU (Power Management Service Unit) and
some CPU reset registers.

I So, we did a DT binding like this:

armada-370-xp-pmsu@22000 {

compatible = "marvell,armada-370-xp-pmsu";

reg = <0x22100 0x400>, <0x20800 0x20>;

};

I First register region: PMSU

I Second register region: CPU reset registers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 34/41



Keeping DT stability is hard: example (1)

A year later, we realized that:

I To implement cpuidle on Armada XP, we need to access
PMSU registers between 0x22000 to 0x22100: need to change
the base address of the first register region.

I Armada 375 has CPU reset registers for SMP, but no PMSU:
need to split in two DT nodes.

I And continue support the old DT binding.

I Not able to use the new reset framework

I Our experience: be very careful about all these system
registers, and think twice.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 35/41



Lesson #12
Technical vs. marketing

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 36/41



Technical vs. marketing

I A new SoC is going to be released and announced.
I Technical people: we want the SoC to be supported in

mainline as soon as it starts shipping.
I Would require to start and post patches early

I Marketing people: you’re not allowed to disclose any details
about the SoC before its official release.

I Prevents from posting patches early, and goes against the
limited absorption rate problem

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 37/41



Lesson #13
Making estimates is impossible

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 38/41



Making estimates is impossible

I Manager: please tell me how much time you need to get this
merged, and when it will be merged?

I Making precise estimates for kernel mainlining work is very
difficult, close to impossible.

I You can estimate how much work is needed to get to the
point where you send the first version.

I But then, the review may point out issues, or require
refactoring of some subsystem: will require time!

I For MSI support on Armada 370/XP, had to touch PowerPC,
x86, SPARC, Tile, S390!

I With the experience, you will progressively get a better feeling
of how difficult it will be for a given change to be merged.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 39/41



Questions?

thomas.petazzoni@free-electrons.com

Thanks to: Tawfik Bayouk, Lior Amsalem, Ezequiel Garcia,
Grégory Clement and Marvell.

Slides under CC-BY-SA 3.0
http://free-electrons.com/pub/conferences/2014/elc/petazzoni-soc-

mainlining-lessons-learned/

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 40/41

http://free-electrons.com/pub/conferences/2014/elc/petazzoni-soc-mainlining-lessons-learned/
http://free-electrons.com/pub/conferences/2014/elc/petazzoni-soc-mainlining-lessons-learned/

