(intel®

Creating optimized XIP systems

CELF ELC 2006
Jared Hulbert

Justin Treon

Agenda

Part A - Why create optimized XIP systems?
* What is XIP?

* How can XIP:

- Perform as good as SnD?
Perform better than SnD?
Save battery life?

Save RAM?
Save money?

Part B - How do you create an optimized XIP system?

Glossary

= eXecute In Place (next slide explains more)

SnD = Store and Download. Default mode of

operation for Linux. Requires code is stored on Flash
or a disk and downloaded to RAM before executing

Demand Paging = Refers to the dynamic process the
kernel uses to get pages of code or data from a file
system as needed

Code is run directly from RAM
non-volatile memory, NOT
copied to RAM

N

NOR Flash and ROM can
XIP - short RAM like reads
[~100ns]

compressed pages
copied into RAM
as needed

/

virtual map to
physical RAM
address

NAND Flash can not XIP -

Long sector based reads
[~20us]

virtual map
to physical flash
address
Process Virtual
Memory

XIP = Executing directly from NOR flash intel

History and present

~1999 - Agenda VR Linux PDA
— Linear XIP cramfs patches
- Kernel XIP

~2002 - MontaVista 3.0

2005 - 2.6.10 mainlined XIP for arm architecture
2005 - XIP Linux cell phones in Japan

2005 - XIP aware MTD

2005 - COW Cramfs patches

2006 - AXFS: Advanced XIP File System

Higher Performance

Performance
= But NOR Flash is slower than RAM!

Instruction Cache Hit Rate Under Load

99.95%
99.90%
99.85%
99.80%
99.75%
99.70%
99.65%
99.60%
99.55% -
99.50%

(O
)
©
o
5=
I
)
<
&)
0]
@)
c
.9
—
(@)
>
=
(7))
1=

1 10 100 1,000 10,000 100,000
period of cache flush (ms)

* Processor Instruction caches hide difference
* High instruction cache hit rates

Caches equalize RAM / NOR code performance (inter)

Performance
- Boot and application launch

SnD slower due to NAND read speed and demand paging overhead

SnD even slower without Erase Block Summary turned on in JFFS2

Quake Browser | Media Player

XIP 20.0 | 2.6 2.3

sSnD 26.7 | 3.9 3.4

SnD
slower by

XIP is faster starting applications and booting (inteF)

Demand paging

Pages in virtual memory but not in physical RAM cause page fault when accessed
Typically won't have enough RAM for all the code

Limited page pool is reused as different code pages are swapped in and out

Page Fault!
Go fetch from
HEE)

(00 BN (@) (6, ENNIOV 1\ [0

—
-
=T 4 _|_'
5 —
o) S

compressed uncompressed virtual
pages pages in memory
in flash physical RAM

Adds complexity to performance measurements (inter)

Performance

Restricting memory shows impact of demand paging on performance

XIP is faster unless excessive RAM memory is available for paging

The SnD performance falls off quickly once the page cache is restricted

FPS with restricted memory

16 32 48 64

availiable memory (MB)

SnD can’t run this workload with 16MB, XIP can (inter)

Lower RAM Density

Flash / RAM usage

free

RAM usage for various workloads e cache

H kernel

(0)]
AN
\

HAN
(00]
\

XIP saves
32MB RAM

(V)
N
|
RAM (MB)
(O8]
N

=
(@)
|

—~
o
>
~—
L
(0))]
e
LL

=
@)
|
o

SnD | XIP | SnD | XIP | SnD | XIP

Bootup PIM & PIM,
sSnD XIP Browser Browser, &

With Summary support on JFFS2 SnD uses more flash than XIP

XIP saves 32MB RAM without using extra flash (inter)

How does it save RAM

Biggest component of RAM savings is code in the page cache
Saving RAM in a SnD system = lower performance
Demand paged systems require code to be in flash and in RAM

Libgte.so = ~3 MB uncompressed = ~1.5MB compressed

Flash RAM

SnD 1.5 mB 3 MB
XIP 3 MB 0O vB

1MB more XIP code = 2MB less RAM

Longer Battery Life

Standby Power

More RAM = More power
— SDRAM power proportional to array size (bits)
— Significant while in low power standby

Experiment
* Measured current used by handsets during standby mode

* Determined current required for different memory subsystems
- SnD = 64MB LPSDRAM & 64MB NAND
- XIP = 32MB LPSDRAM & 64MB NOR

e XIP system saves:
— 8.4% of standby energy
- 2.1 days of standby battery

Lower RAM can mean extra days of standby (intel®)

Lower Cost

Memory Tradeoffs

Floor Costs = Minimum cost for medium

// NOR /NAND/"HDD /

Per Bit Cost = Overhead in medium

Technologies makes sense at different densities (inter)

Sweet spots

RAM and NAND are more efficient at higher density, less efficient at lower densities

NOR more efficient at the lower density, less efficient at higher densities

N
E
I
0]
Q
S

130nm MLC NOR |
130nm NAND |
90nm MLC NOR
90nm NAND
90Nm L‘PDDR

32 128
density (MB)

NOR die is smaller than NAND at low densities (intel®

Cell Phone Requirements

2007 (est)
m 2005
250, 2004

20% ‘\
15%
% handsets
10%
5% 05

0% ‘ ‘ ‘ 2007 (est)

1 8 16 32 64 128 256
MB

Cellular requirements fit in XIP NOR sweet spot (inter)

Total silicon area

Assume two designs:
* SnD = 64MB of RAM and 64MB NAND
e XIP = 32MB of RAM and 64MB NOR

Total Silicon Area SnD vs XIP

mRAM
Flash|

B

SnD 64MB RAM / 64MB XIP 32MB RAM / 64MB
NAND NOR

If design is in NOR sweet spot, XIP saves $$ intel)

Optimizing an XIP system

Goals

1. Have code XIP for quick launching
2. Save RAM for power and cost
3. Use as little extra flash as possible

4. Fit system into single die densities
(32MB or 64MB not 48MB)

CRAMFS

CRAMFS

* Began as a read only filing system for bootable floppies
* Originally written by Linus Torvalds

* Various patches to support Linear XIP CRAMFS

* A patch for 2.6.14 is available on the CELF website

To XIP applications

* Executable binaries are marked as XIP with the “sticky bit” unix
permission bit

* To use less RAM with fast application launch time choosing the right
files to XIP is crucial

intel)

Find code

Find which files in the system are being mapped as code
— Files mapped using mmap() save RAM
— ramust — RAM usage scan tool
« http://sourceforge.net/projects/ramust
« Reports how much RAM is being used and how it is being used
« Uses libproc to search the /proc filesystem
e Outputs summary in tab delimited form

Selecting files to XIP

eRun Ramust on the development platform to see what files have been
memory mapped on the system

— Only memory mapped file can run XIP

eObtain the memory mapped file list for several use cases
— Use models
 All Personal Information Management applications
« All Games
« Media Viewers and Players
* Browsers

eIgnore all entries to deleted temporary files and files under /dev

XIP code for often used application intel)

Find other data & play with possibilities

Find other files that you want to XIP
— cfsst — compressed file system sizing tool
e http://sourceforge.net/projects/cfsst
« Helps find good candidate files for being stored XIP
« Explores changes to filesystem image size

e Qutputs is tab delimited (uncompressed size, compressed
size, type, etc)

Selecting additional files

Look through the list for additional files that should not be compressed
using cfsst on you host system

Select files that:
— Get bigger when compressed
— Are already compressed
— Are used at boot time, but not shown in Ramust

Creating the Linear CRAMFS

Add the sticky bit to files you wish to XIP

When you have added the sticky bit to all the files you will XIP
create the filing system with the mkfs.cramfs tool with the
Linear CRAMFS mkfs.cramfs patch applied

Create the Linear CRAMFS

Configuring the Kernel for
XIP support

Kernel Execute-In-Place from ROM

Set the kernel to make an xipImage and the root filing system to
CRAMFS

XXXX is the address of your CRAMFS (Use upper case)

Remove the previous root and rootsftype options

Set the address to match that of the kernels location in FLASH

Kernel Execute-In-Place from ROM

File Option Help

O @l |
Option = | Qption
Code maturity level mptitt [0 Compressed ROM boot loader base address
= General setup [Ox0) Compressed ROM boot loader B2 address
OConfigure standard Crefault kernel command string: root=/devinull rootflags=phys:
Loadable module suapol || 2 BKernel Execute-In-Flace from ROM
= System Type (000400007 XIF Kernel Physical _ocation

Intel PAAZ: Impleme | g oD

S BU?EL;:F’E;E (PCMCIAK Irootﬂdevmull rootflags=physaddr=0x2C0000 rootfstype=cramfs

Kemel Feafures Default kernel command string (ChMOLINE] ﬁ
Boot options

Floating point emulation type: string

|Userspace binary formal | | prompt: Default kemel command string

Fower management op default:

1™
[I | [IlI] Am i m Al —mk sl e P m m = F T A

XIP aware MTD support

The XIP aware MTD support option allows an XIP kernel to
reside anywhere flash rather than on an 8MB boundary

Build in XIP aware MTD support

XIP aware MTD support

File Option Help
O @E I E

Option e

Ciption

k.emel Features
Boot aptions
Floating point emulation
|Userspace binary formats
Fower management opli
Metworking
= Device Drivers
GGeneric Driver Oplions
hMemory Technaology D
Farallel port support
Flug and Flay support
= Block devices
|2 =chedulers
ATAATAPIIMFEMIRLL
=CEl device sUpport
rAUIt-device support

OSupport 2-chip flash interleave
O=upport 4-chip flash interleave
O=upport 8-chip flash interleave
OFrotection Registers aka one-time programmable {OTF) bits
H=upport for IntelfSharp flash chips
O=upport for AMDFUjitsu flash chips
O=upport for ST [Advanced Architecture) flash chips
O=upport for RAM chips in bus mapping
O=upport for ROM chips in bus mapping
O=upport for absent chips in bus mapping
®XIF aware MTD support

This allows MTD support to work with flash memory which is also
used for xIF purposes. If you're not sure what this is all about
then say M.

Enabling the kernel for Linear XIP CRAMFS

Once you have applied the Linear XIP CRAMFS patch to your kernel
you can build in Linear XIP CRAMFS support

Build in Cramfs root and XIP support

Enabling the kernel for Linear XIP CRAMFS

File ©ption Help

E | Il E

- |

<) (&

Option [+]

Ciption

= U=E support
USE Gadget Suppo
WMCHS0 Card support
= File systems

CO-ROM/DVD Filesyst
DOSIFATINT Filesyste
Fseudo filesystems
Miscellaneous filesyste
Metwork File Systems
Fartition Types
MNative Language Sup

Frofiing suppaort

K.ernel hacking

Security options

= Cryptographic options [«
are rrvntn devicd™
1] 4])

OJFFS2 summary support (EXFPERIMENTAL)
OAdvanced compression options for JFFS2
= ECompressed ROM file systermn support | cramfs)
= EdlUse linear addressing for Crambs
ESupport XIF on linear CramFs
HMEoot file system on linear CramFs
OFreeWxF S file system support (VERITAS WxFS{TM) compatibl%
E1D)

T T L I 0T Film ma sk e = am e ek

[

[~

You must say ¥ to this option if you want to be able to run
applications directly from non-volatile memory. XIP
applications are marked by setting the sticky bit {ie, "chmod
+t<app name="). A cramfs file system then needs to be
created using mkeramfs (with XIFP cramfs support in

it). Applications marked for XIF execution will not be
compressed since they have to run directly from flash.

Building the kernel

Once you have saved the changes you can build an xipImage

AXFS

AXFS - Advanced XIP file system
http://sourceforge.net/projects/axfs
New project started by Intel
Replacement for Linear CRAMFS
Read only file system for Linux

Only uncompress pages that contribute to RAM savings
Will include tools to identify pages that should be uncompressed

Hitting alpha very soon

