
COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

1

Benjamin Zores
ELCE 2010 ï 26th October 2011 ï Prague, Czech Republic

Embedded Linux Optimization Techniques:
How Not To Be Slow ?

This is a placeholder image only. Please select an image to reflect
the content of your PPT presentation. Visit our approved
corporate photography collection on the MarCom Store at:
https://all.alcatel -lucent.com/marcomstore/

2

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

About Me é

ALCATEL
LUCENT

SOFTWARE ARCHITECT

ÅExpert and Evangelist on Open Source Software.
Å8y experience on various multimedia/network embedded devices design.
ÅFrom low-level BSP integration to global applicative software architecture.

OPEN
SOURCE

PROJECT FOUNDER, LEADER AND/OR CONTRIBUTOR FOR:

ÅOpenBricks Embedded Linux cross-build framework.
ÅGeeXboX Embedded multimedia HTPC distribution.
ÅEnna EFL Media Center.
ÅuShare UPnP A/V and DLNA Media Server.
ÅMPlayer Linux media player application.

EMBEDDED
LINUX

CONFERENCE

FORMER EDITIONS SPEAKER

ÅELC 2010 GeeXboX Enna: Embedded Media Center.
ÅELC-E 2010 State of Multimedia in 2010 Embedded Linux Devices.

3

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

From our ñIP Touch ò IP phone ...

- MIPS32 @ 275 MHz.

- 8/16 MB RAM, 4/8/16 MB NOR.

- Physical keys input.

- Basic 2D framebuffer display.

- Powered by VxWorks OS.

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

About My Job é

é to next-generation enterprise IP phones.

- Brainstorming exercise from our R&D Labs.

- Introduced as a proof-of-concept feasibility study,
allowing us to explore modern Linux technologies.

- Early Requirements:

- Powered by GNU/Linux OS, not Android.

- Open to HTML/JS-based WebApps.

- Remaining parts are open to imagination.

4

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

ÅReturn of experience from feasibility study:

- You may want to see this presentation as one big exercise.

- It wonôt help you boost your system (sorry folks L).

- But hopefully itôll prevent you from facing some common troubles.

ÅShare a few tips and tricks for:

- Correctly choosing your hardware.

- Wisely selecting your software architecture and components.

- Measuring and profiling your system.

- Isolating the performances bottlenecks.

- Optimizing your Linux embedded system.

ÅUltimately , avoid your software to be slow by design .

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

What You May Expect é

5

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

In 20 years (from my i286 Desktop to my Core i5 laptop):

ÅMy CPU got 10000x faster.

ÅMy RAM got 12800x bigger (and faster).

ÅMy HDD got 8192x times bigger (and faster).

And yet my PC takes ages to boot

and I need more time to open up my text editor ...

Seriously, What Went Wrong ???

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

Preamble

6

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Rule #1:
Know Your Hardware !

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

7

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

ÅCPU SIMD Optimizations and Execution Modes:

- Thumb -1/2: Tradeoff between code size and efficiency é

- Jazelle : Donôt do JAVA on ARM without it !

- VFP / NEON: Impressive performance boost on all FPU operations;

 Use integer-based routines otherwise.

=> Tradeoff between performances and portability (generic builds are meant for portability).

ÅAudio Management:

- Choice #1: Legacy hardware DSP audio decoding (with complex shmem architecture) ?

- Choice #2: Software Cortex-A9 audio decoding (within 50 MHz or so) ?

ÅDisplay / Input Optimizations:

- GPU Capabilities: 2D blitting, 3D, post -processing ?

 Ensure youôll never fail into software fallback !

 Donôt bother rendering more frames than your LCD can display.

- TouchScreen : Calibrate your driver not to read more often than your max display FPS rate.

 Reading on I2C consumes resources that you may never be able to interpret .

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

Common Considerations é

8

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

Embedded SoC Comparison é

Our Test Case
SoC

Apple
iPhone 3GS

Apple
iPhone 4

Samsung Galaxy S2 Today PC

Introduction Date 2009 2009 2010 2011 2011

CPU ARM1176 ARM Cortex-A8
ARM

Cortex-A8
ARM Cortex-A9 MP

Intel
Core-i5 2500T

Frequency (MHZ) 500 600 1000 2 x 1200 4 x 2300

Memory Size (MB) 256 256 512 1024 Unlimited

L2 Cache Size
(kB)

None 256 640 1024 6144

FPU No Yes Yes Yes Yes

Specialized
Instructions

Thumb-1, Jazelle
Thumb-2, Jazelle,

VFPv3, NEON
Thumb-2, Jazelle,

VFPv3, NEON
Thumb-2, Jazelle,

VFPv3, NEON
MMX, SSEx

Hardware GFX Limited 2D Blitter Full 3D Full 3D Full 3D Full 3D

Hardware Video
Engine

Limited SD Limited SD Limited HD Full HD Full HD

Memory
Bandwidth (GB/s)

1.33 1.6 3.2 6.4 21.3

Performances
(DMIPS)

625
(1.25 DMIPS/MHz)

1200
(2.00 DMIPS/MHz)

2000
(2.00 DMIPS/MHz)

6000
(2.5 DMIPS/MHz/Core)

59800
(6.5 DMIPS/MHz/Core)

CPU PC
Equivalency

Pentium Pro @
233 MHz (1996)

Pentium II @
400 MHZ (1998)

Pentium III
@ 600 MHz (2000)

2x ATOM
@ 1.3 GHz (2008)

N.A.

9

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Rule #2:
Embedded is NOT Desktop !

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

10

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

ÅBrutal Facts:

- Embedded devices get more and more powerful each year.

- But not everybody uses high-end ARM SoCs.

- Still resources limited: CPU, memory bandwidth, run on batteries, slow I/ Os ...

So why would you use the same kind of software than on a PC ?

Android somehow came out and diverged from GNU/Linux for some reason ...

ÅGood Hints on some desktop -oriented performances eating software/technologies:

- Abstraction Framework,

- Messaging Bus,

- Garbage Collector,

- Virtual Machine,

Use these with care !
Badly used, they are sources of terrible difficulties.

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

Embedded is NOT Desktop é

- Interpreted Language,

- XML,

- Data Parsing and Serialization.

11

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Rule #3:
Isolate Your

Systemôs Bottlenecks !

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

12

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Å Optimization requires accurate measurement.

Å Measure must:

- Be deterministic and repeatable.

- Not impact systemôs behavior.

- Be the less intrusive as possible.

Å Try to cover as much usability scenarios as possible;
 donôt limit yourself to average Joe use cases.

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

Measurement and Benchmarking é

13

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

ÅNeed for global feature/solution benchmark (requires end -to -end implementation)

- At Input Level:

ÅRecord scenario: At tslib level, we retrieve X/Y coordinates, pressure level and timestamp.

ÅReplay scenario: We inject raw data to /dev/input/eventX and let the software handle events.

- => Least intrusive input (mimics final human behavior).

ÅCan also be fully automated through simple client/server approach.

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

Benchmarking: An External Approach (1/2) é

14

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

ÅAt Output Level:

ÅExternal video camera recording.

ÅNeed to define scenario start and end conditions (e.g. some widgets appearance / disappearance).

ÅOn a remote PC, play back the recorded video to measure delta between start/stop conditions using OpenCV libraries.

- Measure is the least intrusive (no impact on target).

- Can be used for non-regression tests on a given global feature.

- But you still have no clue which exact part of your code is slow.

- Accuracy depends on camera's capability (usually 30fps, so 33ms minimum threshold).

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

Benchmarking: An External Approach (2/2) é

15

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

ÅModern Linux kernel introduced support for hardware counters

- Introduced as Performance Counters (see http:// goo.gl/LldPv) in 2.6.31.

- Renamed as Performance Events (see http:// goo.gl/KWIfo) in 2.6.32+

- Successor of Oprofile .

- See tools/perf/ directory in kernel.

ÅExample of usage (on OMAP 4430 Pandaboard):

- Requirements: You need debugging symbols to accurately trace your system.

- User-space Profiling: perf top ïU

- Kernelïspace Profiling: perf top -K

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

Benchmarking: An Internal Approach é

http://goo.gl/LldPv
http://goo.gl/LldPv
http://goo.gl/KWIfo
http://goo.gl/KWIfo

16

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Perftools also can be used
for global system profiling
by generating a time chart:

ÅOn target:
perf timechart record
(will generate your perf.data samples).

ÅOn host:
perf timechart ïi perf.data ïo output.svg

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

Determining Workflows é

D-Bus events messaging can be generated
using dbus -monitor , or better, bustle .

- Though very intrusive (impacts on
performances).

- Can be extended to include tcpdump
network messages into workflow.

- See http://willthompson.co.uk/bustle/
for more details.

http://willthompson.co.uk/bustle/

17

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Rule #4:
Kill the Message Bus !

ñDonôt Shoot The Messengerò, Shakespeare, 1598

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

18

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

ÅStudy about different RPC architectures:

- Basic RPC function call between client and server.

- Measure consists of 10000 calls
on an AMD Athlon XP 2800+, 1 GB RAM.

ÅInteresting results,
CORBA is known to be slow but:

- DCOP is 3x slower.

- DBUS is 18x slower.

ÅFull analysis details are available at:

- http :// eleceng.dit.ie/frank/rpc/CORBAGnomeDBUSPerformanceAnalysis.pdf

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

RPC Frameworks Comparison é

CORBA
(ms)

DCOP
(ms)

D-Bus
(ms)

VOID Call 626 1769 9783

IN Integer Call 629 1859 10469

OUT Integer Call 660 1824 10399

IN/OUT Integer Call 686 1903 11162

IN String Call 650 1902 10510

OUT String Call 730 1870 10455

IN/OUT String Call 682 1952 11239

http://eleceng.dit.ie/frank/rpc/CORBAGnomeDBUSPerformanceAnalysis.pdf
http://eleceng.dit.ie/frank/rpc/CORBAGnomeDBUSPerformanceAnalysis.pdf
http://eleceng.dit.ie/frank/rpc/CORBAGnomeDBUSPerformanceAnalysis.pdf

19

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Å Some IPC benchmark figures:

- Performed on TI Pandaboard (TI OMAP 4430 @ 2x 1GHz).

- Reading rows from a SQLite database (75k rows chunks).

- Different use cases:

- Native SQLite direct library function call.

- Client/Server approach with UNIX sockets messaging channel.

- Client/Server approach with D-Bus messaging channel.

- Client/Server approach with D-Bus messaging channel with file descriptor support.

ÅSee ñIPC Performance ò utility (http :// goo.gl/5ygSU).

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

Messaging Benchmarks é

0

5000

10000

15000

20000

25000

30000

35000

1000 75 000 150 000 225 000 300 000

Direct

UNIX Socket

D-Bus

D-Bus FD

(rows)

(ms)

http://goo.gl/5ygSU
http://goo.gl/5ygSU
http://goo.gl/5ygSU

20

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

ÅD-Bus really is meant only for eventing/broadcasting; avoid passing data on it.

ÅThere are more efficient and straightforward alternatives between 2 applications.

ÅAvoid passing large data: use D-Bus with UNIX file descriptor support instead.

ÅRemove paranoid message header/body checks/assertions:

d i f f - N a u r d b u s - 1 . 5 . 0 . o r i g / d b u s / d b u s - m e s s a g e . c d b u s - 1 . 5 . 0 / d b u s / d b u s - m e s s a g e . c

- - - d b u s - 1 . 5 . 0 . o r i g / d b u s / d b u s - m e s s a g e . c 2 0 1 1 - 0 8 - 0 6 1 2 : 3 1 : 5 0 . 6 2 4 2 4 8 0 7 1 + 0 2 0 0

+ + + d b u s - 1 . 5 . 0 / d b u s / d b u s - m e s s a g e . c 2 0 1 1 - 0 8 - 0 6 1 2 : 3 2 : 4 9 . 2 6 4 2 4 8 1 0 3 + 0 2 0 0

@ @ - 3 9 5 5 , 7 + 3 9 5 5 , 7 @ @

 D B u s V a l i d a t i o n M o d e m o d e ;

 d b u s _ u i n t 3 2 _ t n _ u n i x _ f d s = 0 ;

- m o d e = D B U S _ V A L I D A T I O N _ M O D E _ D A T A _ I S _ U N T R U S T E D ;

+ m o d e = D B U S _ V A L I D A T I O N _ M O D E _ W E _ T R U S T _ T H I S _ D A T A _ A B S O L U T E L Y ;

 o o m = F A L S E ;

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

D-Bus Messaging: Be Careful é

25% D -Bus
Messaging
Speedup

21

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Rule #5:
Go Native !!!

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

22

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

ÅDesktop Legacy Applicative Architecture Sample:

- C/C++ code.

- Graphical applications
using native function
calls to libraries.

- Eventing through signals.

- IPC through SysV IPC
or UNIX /TCPIP Sockets.

- Mastered memory usage.

- Easily debuggable
(using gdb or valgrind).

- Easily profilable
(using gcov, Oprofile,
or Linux PerfTools).

Applicationôs portability, skin -ability and easiness of deployment
really depends on how you write your code L

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

Desktop Software Architecture Comparison é

23

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

ÅDesktop Web Applicative Architecture Sample:

- JS/HTML/CSS code.

- Graphical user application using
interpreted JavaScript functions
with bindings to native
middleware apps/libs.

- WebServices usage and
JSON data (de)serialization
to exchange with middleware apps.

- JavaScript-based Apps:

- Easy and fast to write.

- Even easier to skin, customize and deploy.

- But interpreted and compiled in time,
making them really hard to impossible
to properly debug and/or profile.

- Slower than any native equivalent.

 Tradeoff needs to be made .

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

Desktop Software Architecture Comparison é

24

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

ÅBrowser Architecture:

- Makes JS portable to your legacy OS.

- Specific bindings for OS and architectures.

- Specifically designed modules to access
the hardware beneath
(audio, video, graphics, WebGL ...).

ÅOS Concepts :

- Scheduler and Memory Allocator.

- Applications Security / Sandboxing ...

ÅBindings for OS native services:

- HTML5 Local Storage

- HTML5 Audio/Video tags é

 Modern browsers are to
 JavaScript what
 POSIX used to be for C.

Embedded Linux Optimizations Techniques: How Not To Be Slow ?

Browser Architecture Perspective: A Virtualized OSé

