
Issued by Kento Kobayashi, R&D Center, Sony Corporation

Copyright 2020 Sony Corporation

Development of "Interrupt Storm Detection" Feature

October 2020

R&D Center, Sony Corporation26.Oct.20202

Agenda

• Background

• What is interrupt storm?

• Cases of interrupt storms

• Existing ways to debug interrupt storms for each cases

• Our solution

• Interrupt storm detection feature

• Example of using interrupt storm detection feature for actual problem

R&D Center, Sony Corporation26.Oct.20203

Self introduction

• Name

• Kento Kobayashi

• Company

• Sony Corporation

• Responsible for

• Linux kernel and device drivers for Sony products.

R&D Center, Sony Corporation26.Oct.20204

Background

R&D Center, Sony Corporation26.Oct.20205

What is “Interrupt Storm”?

• “Interrupt Storm” is a continuous hardware interrupt to CPU.

• CPU needs to execute interrupt handlers continuously.

• “Interrupt Storm” causes:

• System hang-up due to high CPU utilization by the interrupt handler

• Difficult to debug because console is not responding

• To debug interrupt storm:

• Need to identify IRQ number which causes interrupt storm.

• Cases of “Interrupt Storm”:

• Case1 : Unhandled(Spurious) interrupt

• Case2 : High-frequency handled interrupt

of Interrupts

time

R&D Center, Sony Corporation26.Oct.20206

Case1 : Unhandled(Spurious) interrupt

• What is “Unhandled(Spurious) interrupt”?
• Interrupt handler doesn’t handle hardware interrupt

• Why “Unhandled(Spurious) interrupt” occur?
• Problem of device driver.

• Interrupt handler do nothing if that interrupt is not own interrupt.

• Then interrupt status is not clear, so interrupt is raised continuously.

• Example of “Unhandled(Spurious) interrupt” case
• Shared IRQ by multiple device driver.

• Interrupt handler is executed whether not own interrupt.

• Then if interrupt handler not recognize as own interrupt wrongly, nobody handled
raised interrupt.

• Not registered interrupt handler

• Then nobody handled raised interrupt.

R&D Center, Sony Corporation26.Oct.20207

How to debug Case1: Unhandled(Spurious) interrupt

• Using “spurious interrupt handling” kernel feature.(after v2.6.10)
• Disable interrupt and print IRQ number after detect 99900[times] spurious interrupt.

• How to debug with “spurious interrupt handling”

• This feature shows the following message.

• We can know interrupt storm is occurred in which IRQ number.

• Then we can know which device driver we should investigate from /proc/interrupts.

irq 15: nobody cared (try booting with the "irqpoll" option)
Disabling IRQ #15

cat /proc/interrupts
CPU0 CPU1 CPU2 CPU3

…snip…
15: 34673 33826 34696 33641 level 64 Edge foo

…snip…

R&D Center, Sony Corporation26.Oct.20208

“spurious interrupt handling” kernel feature mechanism

1

t0 t0+100

Spurious irq Spurious irq counter

t1

t1 t1+100

Spurious irq Spurious irq

t2

2

counter

…

t99899 t99899+100

Spurious irq Spurious irq

t99900 9 9 9 0 0

counter

• Increment counter if spurious interrupt
occur within 100ms of the previous

spurious interrupt.

• Disable IRQ if counter reaches 99900.
• Display “Disabling IRQ#XX” in kernel log.
• Clear counter if spurious interrupt is not

occurred within 100ms of the previous
spurious interrupt.time(ms)

time(ms)

time(ms)

R&D Center, Sony Corporation26.Oct.20209

Case2 : High-frequency handled interrupt

• What is “High-frequency handled interrupt”?
• Interrupt handler handled interrupt, but interrupt is raised continuously.

• Why “High-frequency handled interrupt” occur?
• Problem of hardware or device driver.
• Interrupt is raised continuously whether clear interrupt cause.

• Example of “High-frequency handled interrupt” case
• Hardware design mistake or design change

• Usually occurs at start phase of development

• Wrong interrupt trigger setting.
• Then interrupt status is remains “interrupt occur”, interrupt will be raised

continuously.

• Forget clear interrupt cause
• Then interrupt cause remains, interrupt will be raised continuously.

R&D Center, Sony Corporation26.Oct.202010

How to debug Case2: High-frequency handled interrupt

• Using NMI (Non-maskable Interrupt) functionality
• What is NMI?

• Interrupt and dump CPU registers and backtrace even if under “Interrupt Storm”.

• Problems
• Need to secure about how to use and invoke NMI for your board

• NMI cannot be used on some systems or boards.
• Can’t detect as “Interrupt Storm”.

• Need to invoke NMI multiply to find interrupt number which causes “Interrupt Storm”

• Using JTAG equipment
• What is JTAG?

• Snoop CPU registers, memory contents.
• Specify which interrupt handler works hard.

• Problems
• Need to secure about how to enable JTAG for your board
• JTAG equipment is expensive :(

R&D Center, Sony Corporation26.Oct.202011

How to debug Case2: High-frequency handled interrupt

• Using PSTORE_FRACE
• What is PSTORE_FTRACE

• PSTORE_FTRACE records function call history into your persistent memory.

• How to use?
• Enable PSTORE_FTRACE by following command before “Interrupt Storm” occur.

• Reboot your board by pressing reset button once storm occur.
• Confirm function call history by just before reboot from files under /sys/fs/pstore/* .

• Problems
• Persistent memory (including System RAM) is unavailable in some systems.
• Enabling PSTORE_FTRACE changes system’s behavior.

• Affect performance impact due to records function call history.

echo 1 > /sys/kernel/debug/pstore/record_ftrace

Those ways has some problems to debug interrupt storm!!

R&D Center, Sony Corporation26.Oct.202012

Our solution

R&D Center, Sony Corporation26.Oct.202013

"Interrupt Storm Detection" feature – Summary

• Summary of features
• Detect as interrupt storm if number of interrupt exceeds a threshold per 100ms.

• Print the IRQ number to kernel log if interrupt storm is detected.

• Threshold can be set by the user.

• Can disable corresponding interrupts after detection.

• Can invoke kernel panic after detection for debug.

of Interrupts

time
100(ms)

Threshold value Detect as Interrupt Storm!!

R&D Center, Sony Corporation26.Oct.202014

"Interrupt Storm Detection" feature – Detail of mechanism

1

t0 t0+100

Handled
interrupt

counter

• Increment counter if handled interrupt occurs
• Records 1st interrupt time

time(ms)

• Case where the threshold is set to 1000[times/100ms].

1st interrupt time

t0

R&D Center, Sony Corporation26.Oct.202015

"Interrupt Storm Detection" feature – Detail of mechanism

2

t0 t0+100

counter

time(ms)

• Case where the threshold is set to 1000[times/100ms].

1st interrupt time

t0
t1

Handled
interrupt • Increment counter if handled interrupt occurs

within 100[ms]

R&D Center, Sony Corporation26.Oct.202016

"Interrupt Storm Detection" feature – Detail of mechanism

2 0

t0 t0+100

counter

time(ms)

• Case where the threshold is set to 1000[times/100ms].

1st interrupt time

t0

Handled
interrupt

t20

2 0

t0 t0+100

counter

time(ms) 1st interrupt time

t0
t20

• If counter is not reached threshold, interrupt
storm is not occurred

・
・
・

R&D Center, Sony Corporation26.Oct.202017

"Interrupt Storm Detection" feature – Detail of mechanism

1

t0 t0+100

counter

time(ms)

• Case where the threshold is set to 1000[times/100ms].

1st interrupt time

t21

],

• Records as 1 interrupt time.

• If handled interrupt is occurred after 100[ms],
set counter to 1.

• Records as 1st interrupt time.

Handled
interrupt

t21

R&D Center, Sony Corporation26.Oct.202018

"Interrupt Storm Detection" feature – Detail of mechanism

2

t21 t21+100

counter

time(ms)

• Case where the threshold is set to 1000[times/100ms].

1st interrupt time

t21

Handled
interrupt

1 0 0 0

t21 t21+100

counter

time(ms) 1st interrupt time

t21

• If the counter reaches the threshold
(1000 times), detect as interrupt storm

…

Handled
interrupt

t1021

Interrupt
storm!!

t22

・
・
・

R&D Center, Sony Corporation26.Oct.202019

"Interrupt Storm Detection" feature – Main features

• Kernel configs:

Setting whether to enable Interrupt Storm Detection
Config INTR_STORM_DETECT

bool "Support interrupt storm detection"
default n

Setting the number of interrupts detected as interrupt storms
config INTR_STORM_DETECT_LIMIT

int "Count considered as an interrupt storm."
depends on INTR_STORM_DETECT
default 100000

R&D Center, Sony Corporation26.Oct.202020

"Interrupt Storm Detection" feature – Main features

• Setting Thresholds
• Can set threshold by the following command for each IRQ number.

• How to determine threshold value:
• Appropriate threshold values are different depending on the system
• Must consider about the outlier value for each system.

• To know how many times of interrupts are raised in the last 100ms:

echo 20000 > /proc/irq/<IRQ number>/storm/storm_limit

cat /proc/irq/storm_info_all
IRQ: current_count
…(snip)…
15: 2501 foo
…(snip)…

R&D Center, Sony Corporation26.Oct.202021

"Interrupt Storm Detection" feature – Main features

• How to debug Interrupt Storm?
1. If interrupt storm is detected, the following message is displayed.

2. Clarify which device driver generates the interrupt storm by /proc/interrupts.

3. After that you can debug device driver or HW.

IRQ storm detect IRQ#15!

cat /proc/interrupts
CPU0 CPU1 CPU2 CPU3

…(snip)
15: 34673 33826 34696 33641 level 64 Edge foo

R&D Center, Sony Corporation26.Oct.202022

"Interrupt Storm Detection" feature – Other features

• Other features
A) Disable corresponding interrupts if interrupt storm is detected.

• System can continue to run after interrupt storm occurs.
B) Invoke kernel panic after interrupt storm detected.

• Stop system after interrupt storm detected.

• Notes for these features:
• These features have a significant impact on the system.
• Must be disabled after you identified IRQ number.

R&D Center, Sony Corporation26.Oct.202023

"Interrupt Storm Detection" feature – Other features

A) Disable corresponding interrupts if interrupt storm is detected
• Kernel config:

• proc interface:

B) Invoke kernel panic after interrupt storm detected
• Kernel config:

• proc interface:

config INTR_STORM_DETECT_DISABLE_IRQ
bool "Disable IRQ after interrupt storm detected"
depends on INTR_STORM_DETECT
default n

config INTR_STORM_DETECT_PANIC
bool "Do panic after interrupt storm detected"
depends on INTR_STORM_DETECT
default n

echo 0 or 1 > /proc/irq/<IRQ number>/storm/disable_after_detect

echo 0 or 1 > /proc/irq/<IRQ number>/storm/panic_after_detect

R&D Center, Sony Corporation26.Oct.202024

"Interrupt Storm Detection" feature – Debug info

• Debug information

• Some useful information for each interrupt number can be shown.

cat /proc/irq/<IRQ number>/storm/storm_info
storm_limit : 100000
current count : 2
disable_after_detect : 1
panic_after_detect : 0
worst count : 659

Threshold value for interrupt storm detection

Number of interrupts per unit time currently observed

Setting to disable interrupts after interrupt storm
detected

detected
Setting to invoke kernel panic after interrupt storm
detected

so far
Maximum number of interrupts detected per unit time
so far

R&D Center, Sony Corporation26.Oct.202025

"Interrupt Storm Detection" feature – Implementation

• Sequence of interrupts before adding functions (ARM64)

architecture dependent part ← → architecture independent part

Spurious interrupt handling feature runs here.
IRQ_HANDLED /IRQ_NONE

R&D Center, Sony Corporation26.Oct.202026

"Interrupt Storm Detection" feature – Implementation

• Sequence of interrupts after adding functions (ARM64)

architecture dependent part ← → architecture independent part

New Interrupt Storm Detection Function
Performed Here IRQ_HANDLED /IRQ_NONE

R&D Center, Sony Corporation26.Oct.202027

Actual problem caused by interrupt storm

• Problem
• Exception occurred by softlockup at __do_softirq() in our development board for our

products.
• This problem is caused by interrupt storm.

• How to debug this problem
• Debug about softlockup like follows

1. Enable CONFIG_LOCKUP_DETECTOR and
CONFIG_BOOTPARAM_SOFTLOCKUP_PANIC.

2. Enable softlockup_panic by follow.

3. Reproduce problems.

4. Confirm softlockup call trace.

5. Call trace of softlockup at __do_softirq() displayed many times.

echo 1 > /proc/sys/kernel/softlockup_panic

To break down problem, try to use interrupt storm detection feature.

R&D Center, Sony Corporation26.Oct.202028

Actual problem caused by interrupt storm

• How to debug interrupt storm
1. “Interrupt Storm Detection” feature shows the following message.(Threshold

setting is 10000[times/100msec])

2. Confirm /proc/interrupts.

3. Investigate PCIe device driver and hardware.

• Cause
• FPGA which connected through PCIe had a problem in its firmware.

[1963.635312] IRQ storm detect IRQ#387!

#cat /proc/interrupts
..(snip)..
387: 1 0 0 0 GICv2 104 Level PCIE, PCIe PME, aerdrv, PCIe PME, aerdrv

ARM64
development

board
FPGAPCIe

Interrupt!!

R&D Center, Sony Corporation26.Oct.202029

"Interrupt Storm Detection" feature – Limitations

• Can’t identify device driver which registers shared interrupt handler.

• Only we can know IRQ number when interrupt storm is detected.

• Can’t detect interrupt handler which occupies CPU for a long time.

• This feature only detect high-frequency interrupts.

SONY is a registered trademark of Sony Corporation.

Names of Sony products and services are the registered trademarks and/or trademarks of Sony Corporation or its Group companies.

Other company names and product names are registered trademarks and/or trademarks of the respective companies.

