SONY

Development of “Interrupt Storm Detection™ Feature

October 2020

Issued by Kento Kobayashi, R&D Center, Sony Corporation

Copyright 2020 Sony Corporation

Agenda

« Background

 What is interrupt storm?

» (Cases of interrupt storms

« Existing ways to debug interrupt storms for each cases
* Our solution

» Interrupt storm detection feature

« Example of using interrupt storm detection feature for actual problem

SONY 2 26.0ct.2020 R&D Center, Sony Corporation

Self introduction

« Name

« Kento Kobayashi
« Company

« Sony Corporation
* Responsible for

« Linux kernel and device drivers for Sony products.

SONY 3 26.0ct.2020 R&D Center, Sony Corporation

SONY

4

26.0ct.2020 R&D Center, Sony Corporation

Background

What is “Interrupt Storm”?

* “Interrupt Storm” is a continuous hardware interrupt to CPU.
« CPU needs to execute interrupt handlers continuously.
* “Interrupt Storm” causes:
« System hang-up due to high CPU utilization by the interrupt handler
 Difficult to debug because console is not responding
 To debug interrupt storm:
* Need to identify IRQ number which causes interrupt storm.
« Cases of “Interrupt Storm”:

of Interrupts

4

« Case1 : Unhandled(Spurious) interrupt

« Case?2 : High-frequency handled interrupt

v

time

S ONY 5) 26.0ct.2020 R&D Center, Sony Corporation

Case1 : Unhandled(Spurious) interrupt

 What is “Unhandled(Spurious) interrupt”?

* Interrupt handler doesn’t handle hardware interrupt

 Why “Unhandled(Spurious) interrupt” occur?
« Problem of device driver.
» Interrupt handler do nothing if that interrupt is not own interrupt.
« Then interrupt status is not clear, so interrupt is raised continuously.

« Example of “Unhandled(Spurious) interrupt” case
» Shared IRQ by multiple device driver.
» Interrupt handler is executed whether not own interrupt.

« Then if interrupt handler not recognize as own interrupt wrongly, nobody handled
raised interrupt.

* Not registered interrupt handler
* Then nobody handled raised interrupt.

SONY 6 ‘ 26.0ct.2020 R&D Center, Sony Corporation

How to debug Case1: Unhandled(Spurious) interrupt

* Using “spurious interrupt handling” kernel feature.(after v2.6.10)
» Disable interrupt and print IRQ number after detect 99900[times] spurious interrupt.
« How to debug with “spurious interrupt handling”

« This feature shows the following message.

irg 15: nobody cared (try booting with the "irgpoll" option)
Disabling IRQ #15

« We can know interrupt storm is occurred in which IRQ number.
« Then we can know which device driver we should investigate from /proc/interrupts.

cat /proc/interrupts
CPUO CPU1 CPU2 CPU3
...snip...
15: 34673 33826 34696 33641 level 64 Edge foo
...snip...

SONY 7 | 26.0ct2020 R&D Center, Sony Corporation

“spurious interrupt handling” kernel feature mechanism

counter

Sourious ird Sourious | . _ _
PUFIOUS ITq SpUTBUS T « Increment counter if spurious interrupt
/\ /\ 1 occur within 100ms of the previous
. . ®—> fime(ms) spurious interrupt.
{0 t1 t0+100 P P
Spurious irqg Spurious irq counter

/'\ /'\ o time(ms) ‘ 2 / \
t1 t2 t1+100

 Disable IRQ if counter reaches 99900.
« Display “Disabling IRQ#XX” in kernel log.

Spurious irq Spurious irq Clear counter if spurious interrupt is not
/\ /\ counter occurred within 100ms of the previous
. . o—> time(ms) spurious interrupt.
199899 to9900 toosoa+100 == |9[9(9]0(0 /

S ONY 8 26.0ct.2020 R&D Center, Sony Corporation

Case2 : High-frequency handled interrupt

 What is “High-frequency handled interrupt”?

* Interrupt handler handled interrupt, but interrupt is raised continuously.

 Why “High-frequency handled interrupt” occur?
* Problem of hardware or device driver.
* Interrupt is raised continuously whether clear interrupt cause.

« Example of “High-frequency handled interrupt” case
« Hardware design mistake or design change
« Usually occurs at start phase of development

« Wrong interrupt trigger setting.
* Then interrupt status is remains “interrupt occur”, interrupt will be raised
continuously.

* Forget clear interrupt cause
* Then interrupt cause remains, interrupt will be raised continuously.

S ONY 9 26.0ct.2020 R&D Center, Sony Corporation

How to debug Case2: High-frequency handled interrupt

« Using NMI (Non-maskable Interrupt) functionality
* What is NMI?

 Interrupt and dump CPU registers and backtrace even if under “Interrupt Storm”.

* Problems
» Need to secure about how to use and invoke NMI for your board
* NMI cannot be used on some systems or boards.
» Can'’t detect as “Interrupt Storm”.
* Need to invoke NMI multiply to find interrupt number which causes “Interrupt Storm”

« Using JTAG equipment
 What is JTAG?

» Snoop CPU registers, memory contents.
» Specify which interrupt handler works hard.

* Problems
» Need to secure about how to enable JTAG for your board
» JTAG equipment is expensive :(

SONY 10 ‘ 26.0ct.2020 R&D Center, Sony Corporation

How to debug Case2: High-frequency handled interrupt

. Using PSTORE_FRACE

« What is PSTORE FTRACE
« PSTORE_FTRACE records function call history into your persistent memory.

* How to use?
« Enable PSTORE_FTRACE by following command before “Interrupt Storm” occur.

echo 1 > /sys/kernel/debug/pstore/record_ftrace

* Reboot your board by pressing reset button once storm occur.
» Confirm function call history by just before reboot from files under /sys/fs/pstore/* .

* Problems
» Persistent memory (including System RAM) is unavailable in some systems.
« Enabling PSTORE_FTRACE changes system’s behavior.
» Affect performance impact due to records function call history.

[Those ways has some problems to debug interrupt storm!!

SONY 11 | 26.0ct2020 R&D Center, Sony Corporation

SONY

12

26.0ct.2020

R&D Center, Sony Corporation

Our solution

"Interrupt Storm Detection” feature — Summary

« Summary of features
* Detect as interrupt storm if number of interrupt exceeds a threshold per 100ms.
* Print the IRQ number to kernel log if interrupt storm is detected.
« Threshold can be set by the user.
« Can disable corresponding interrupts after detection.
« Can invoke kernel panic after detection for debug.

of Interru p“ts

Threshold value

|
[
|
|
: Detect as Interrupt Storm!!
|

|

I

I

I

I

I

I

I L
| 100(ms))| i

me

S ONY 13 26.0ct.2020 R&D Center, Sony Corporation

“Interrupt Storm Detection" feature — Detail of mechanism

« Case where the threshold is set to 1000[times/100ms].

counter

Handled
int t . .
interrup) 1 « Increment counter if handled interrupt occurs

/\ * Records 1stinterrupt time

o o time(ms) 1stinterrupt time

t0 t0+100

t0

SONY 14 26.0ct.2020 R&D Center, Sony Corporation

“Interrupt Storm Detection" feature — Detail of mechanism

« Case where the threshold is set to 1000[times/100ms].

counter
Handled
interrupt) 2 * Increment counter if handled interrupt occurs
A within 100[ms]
o o o time(ms) 1stinterrupt time
t0 t1 t0+100
t0

S ONY 15 26.0ct.2020 R&D Center, Sony Corporation

“Interrupt Storm Detection" feature — Detail of mechanism

« Case where the threshold is set to 1000[times/100ms].

Handled
interrupt
\ 4 A \ 4
t0 t20 t0+100
L \ 4 L
t0 t20 t0+100

SONY 16 | 26.0ct2020

time(ms)

time(ms)

counter

2

0

1stinterrupt time

to

counter

2

0

1stinterrupt time

to

R&D Center, Sony Corporation

{.

If counter is not reached threshold, interrupt
storm is not occurred

|

“Interrupt Storm Detection" feature — Detail of mechanism

« Case where the threshold is set to 1000[times/100ms].

counter
Handled

interrupt
- 1 If handled interrupt is occurred after 100[ms],
. . set counter to 1.
° time(ms) 18t interrupt time

t0 t0+100 t21 Records as 1stinterrupt time.

t21

SONY 17 26.0ct.2020 R&D Center, Sony Corporation

“Interrupt Storm Detection" feature — Detail of mechanism

« Case where the threshold is set to 1000[times/100ms].

Handled
interrupt
Z'\ I time(ms)
t21 122 t21+100
Handled = Tnterrupt
interrupt storm!!
——eo0—0 0 /s\ ° time(ms)
t21 t1021 t21+100

=

counter

2

1stinterrupt time

t21

counter

110(0

0

1stinterrupt time

t21

S ONY 18 26.0ct.2020 R&D Center, Sony Corporation

{.

If the counter reaches the threshold
(1000 times), detect as interrupt storm

|

“"Interrupt Storm Detection" feature — Main features

« Kernel configs:

Setting whether to enable Interrupt Storm Detection
Config INTR_STORM_DETECT

bool "Support interrupt storm detection”

default n

Setting the number of interrupts detected as interrupt storms
config INTR_STORM_DETECT_LIMIT

int "Count considered as an interrupt storm."

depends on INTR_STORM_DETECT

default 100000

S ONY 19 26.0ct.2020 R&D Center, Sony Corporation

“"Interrupt Storm Detection" feature — Main features

« Setting Thresholds
» Can set threshold by the following command for each IRQ number.

echo 20000 > /proc/irqg/<IRQ number>/storm/storm_Ilimit

 How to determine threshold value:
» Appropriate threshold values are different depending on the system
» Must consider about the outlier value for each system.

« To know how many times of interrupts are raised in the last 100ms:

cat /proc/irg/storm_info_all
IRQ: current_count

15: 2501 foo

S ONY 20 26.0ct.2020 R&D Center, Sony Corporation

“"Interrupt Storm Detection" feature — Main features

« How to debug Interrupt Storm?
1. If interrupt storm is detected, the following message is displayed.

IRQ storm detect IRQ#15!

2. Clarify which device driver generates the interrupt storm by /proc/interrupts.

cat /proc/interrupts
CPUO CPU1 CPU2 CPU3

15: 34673 33826 34696 33641 level 64 Edge foo

3. After that you can debug device driver or HW.

SONY 21 26.0ct.2020 R&D Center, Sony Corporation

"Interrupt Storm Detection” feature — Other features

e Other features
A) Disable corresponding interrupts if interrupt storm is detected.
« System can continue to run after interrupt storm occurs.
B) Invoke kernel panic after interrupt storm detected.
« Stop system after interrupt storm detected.

* Notes for these features:
» These features have a significant impact on the system.
* Must be disabled after you identified IRQ number.

SONY 22 26.0ct.2020 R&D Center, Sony Corporation

"Interrupt Storm Detection” feature — Other features

A) Disable corresponding interrupts if interrupt storm is detected
« Kernel config:

config INTR_STORM_DETECT_DISABLE_IRQ
bool "Disable IRQ after interrupt storm detected"
depends on INTR_STORM_DETECT
default n

» proc interface:

echo 0 or 1 > /proc/irq/<IRQ number>/storm/disable_after_detect

B) Invoke kernel panic after interrupt storm detected
« Kernel config:

config INTR_STORM_DETECT_PANIC
bool "Do panic after interrupt storm detected"
depends on INTR_STORM_DETECT
default n

* proc interface:

echo 0 or 1 > /proc/irq/<IRQ number>/storm/panic_after_detect

SONY 23 ‘ 26.0ct.2020 R&D Center, Sony Corporation

“"Interrupt Storm Detection” feature — Debug info

« Debug information

Some useful information for each interrupt number can be shown.

SONY

storm_ limit
current count

panic_after_detect
worst count

: 100000 ~—__|

2
disable_after detect : \

650 N

cat /proc/irq/<IRQ number>/storm/storm_info

s

-

Threshold value for interrupt storm detection

s

Vs

Number of interrupts per unit time currently observed

\ Setting to disable interrupts after interrupt storm
detected

[Setting to invoke kernel panic after interrupt storm
. detected

24 26.0ct.2020 R&D Center, Sony Corporation

[Maximum number of interrupts detected per unit time
L so far

J

“Interrupt Storm Detection" feature — Implementation

« Sequence of interrupts before adding functions (ARM64)

‘ HW | ‘ arch/arméd/fikkernelfirg.c ’ ‘ drivers/irgqchip/irg-gic.c rl‘ kernelfirgfirgdesc.c | ‘ lkkernelfirg/chip.c l lkernelfirqfhandle.c |

i Interrupt!

i
L

i gic_handle_irg
T

| handle_dom;n_irq

[}
I i generic_handle_irg

| handle_simple_irg

: handle_irg_svent

Spurious interrupt handling feature runs here. |

I E
]
I -
:(................... I JI

‘ DeviceDriver [‘ kernelfirg/spurious.c

handle_irq_event_percpu |
__handle_irg_event_percpu |

]
| Device _Driver_handler

|
1 IRQ_HANDLED /IRQ_NONE |

>

alt I;!noirqdehug]

! note_interrupt

‘HW

‘ arch/arme4/fikernelfirg.c

drivers/irgchip/irg-gic.c I‘ kernelfirgfirqdesc.c

kernelfirg/chip.c

kernelfirg/handle.c

SONY

architecture dependent part «—

25 | 26.0ct2020

R&D Center, Sony Corporation

— architecture independent part

DeviceDriver

kernelfirgfspurious.c

“Interrupt Storm Detection" feature — Implementation
« Sequence of interrupt? after adding functions (ARMG64)

‘ HW l ‘ arch/arm&4/kernelfirg.c ’ ‘ drivers/irgchip/irg-gic.c ’I‘ kernelfirgfirgdesc.c l | kernelfirg/chip.c l lkernel,’irqlhandle.c l ‘ DeviceDriver | ‘ kernelfirg/spurious.c | ‘ kernel/irg/storm_detect.c
1 1 1 1 1 I 1 1 I
i Interrupt! | | I |) :) | |
——3 | | | | | | |

i gic_handle_irq ‘: I | | | | |
T Fl] I I I 1
| handle_domfin_irg = | : | :

T L | E]]]]]

I | generic_handle_irg | | |

] 1 1] I

]]]]

| handle_simple_irg

: handle_irg_event

I i handle_irq_event_percpu |
I I

i __handle_irq_event_percpu i

1

1]
| Device_Driver_handler 1

New Interrupt Storm Detection Function | |
Performed Here | RQAANDLED R None | | |

| | |
alt P I;!noirqdebug] i h :

I ! note_interrupt L - !
I E E | E irg_storm_detec | ‘_E
| < .
| I I ———
! : :‘.........................: : ; d i .
‘ HwW l ‘ arch/armé4/kernelfirg.c l ‘ drivers/irgchip/irg-gic.c ll‘ kernelfirgfirgdesc.c l | kernelfirg/chip.c [‘ kerneljirg/handle.c I ‘ DeviceDriverl ‘ kernelfirg/spurious.c I ‘ kernel/irgfstorm_detect.c
architecture dependent part < — architecture independent part

S ONY 26 26.0ct.2020 R&D Center, Sony Corporation

Actual problem caused by interrupt storm

 Problem
» Exception occurred by softlockup at _ do_softirq() in our development board for our
products.
« This problem is caused by interrupt storm.

« How to debug this problem
 Debug about softlockup like follows

1. Enable CONFIG_LOCKUP_DETECTOR and
CONFIG_BOOTPARAM_SOFTLOCKUP_PANIC.

2. Enable softlockup_panic by follow.

echo 1 > /proc/sys/kernel/softlockup_panic

3. Reproduce problems.
4. Confirm softlockup call trace.
5. Call trace of softlockup at __do_softirq() displayed many times.

[To break down problem, try to use interrupt storm detection feature.

SONY 27 | 26.0ct2020 R&D Center, Sony Corporation

Actual problem caused by interrupt storm

 How to debug interrupt storm

1. “Interrupt Storm Detection” feature shows the following message.(Threshold

setting is 10000[times/100msec])

[1963.635312] IRQ storm detect IRQ#387!

2. Confirm /proc/interrupts.

#cat /proc/interrupts
..(snip)..

387: 1 0 0 0 GICv2 104 Level PCIE, PCIe PME, aerdrv, PCle PME, aerdrv

3. Investigate PCle device driver and hardware.
« Cause

FPGA which connected through PCle had a problem in its firmware.

Interrupt!!

ARM64

development FPGA
board

SONY 28 | 26.0ct2020

R&D Center, Sony Corporation

“"Interrupt Storm Detection" feature — Limitations

« Can't identify device driver which registers shared interrupt handler.
* Only we can know IRQ number when interrupt storm is detected.

« Can't detect interrupt handler which occupies CPU for a long time.
» This feature only detect high-frequency interrupts.

S ONY 29 26.0ct.2020 R&D Center, Sony Corporation

SONY

SONY is a registered trademark of Sony Corporation.
Names of Sony products and services are the registered trademarks and/or trademarks of Sony Corporation or its Group companies.

Other company names and product names are registered trademarks and/or trademarks of the respective companies.

