
Real Time Linux Scheduling Comparison

Vince Bridgers

Software Architect

Altera Corporation

Who am I?

2

Software Developer and Architect at Altera Corporation

– Open Source Development Activities in Austin, Texas

Open source projects

– Linux – LTSI, Real-time and Custom for ARM SOCs

– UBoot

Technologies …

– Altera FPGA IP Enablement

– Embedded Software and Systems

– Ethernet, IEEE 1588

– Automated testing

Agenda

3

Introduction to Real Time Linux & LTSI

Creating a Custom Real Time Linux Kernel

A Methodology for Comparing Scheduling Latency

Some interesting results

LTSI and Real-Time Linux

4

LTSI Announced in October 2011 at LinuxCon Europe
– Create a supported Linux kernel for the embedded systems life cycle

– Industry managed kernel as common ground for the embedded industry

– Mechanisms for upstreaming activities from embedded systems
engineers

Real Time Linux
– A set of patches developed over the years to provide soft real time

capabilities by allowing pre-emption in the Linux kernel and additional
features to improve scheduling determinism.

– Main Wiki - https://rt.wiki.kernel.org/index.php/Main_Page

https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page

Real-Time Classifications

5

Type of Real Time Characteristics Use Cases

Soft Real Time Subjective Scheduling deadlines,

depends on the application

Media rendering on mainstream operating

systems, network I/O, flash access

95% Real Time Real time requirements met 95%

of the time, system can

compensate 5% of the time.

Voice Communications, data acquisition

100% Real Time Real time requirements met 100%

of the time else manufacturing

defects can occur

Factory automation where failure results in

manufacturing defects

Safe Real Time Real time requirements met 100%

of the time else serious injury or

death can occur

Flight and weapons control, life critical

medical equipment

Sources of Non-Deterministic Latency

6

Latency is “the interval between stimulus and response”

– Latin root – latēns : “to lie hidden”

“Nondeterministic” means the ∆Ƭ latency between “stimulus” and “response” falls outside of

an accepted upper and lower bound, or cannot be predicted. Known as “Latency Jitter”

Latency can come from multiple sources ….

– Unbounded Priority and Interrupt Inversion

– Scheduling latency (depends on scheduling policies)

– Interrupt latency

– Caching and TLB effects – especially in multiprocessors

– Paging I/O Latency

– Memory access latency

Scheduling Latency

1) ISR

2) Scheduler Invoked

3) Task Picked

4) Context Switch

TH

TL
R

TM0 TM1 TM2 Tm(n-1)

Preempt RT Patch

7

Linux RT Preempt is a 95% Real Time System

RT Preempt Changes …

– Threaded Interrupts

– Pre-emptible mutual exclusion (“Sleeping” Spinlocks)

– Priority Inheritance

– High Resolution Timer

– Real time scheduling policies – SCHED_RR and SCHED_FIFO

“Real Time” applications are expected to make good choices in the application design

– Make sure commonly used memory is paged in

– Smart processor and memory management

– Smart priority assignment and management

Simply using the RT Preempt patch does not solve all problems. Users must do some work too.

User must be careful with affinities and priorities

Creating a rebased Linux-RT Kernel

8

Checkout the latest 3.10-ltsi kernel

Checkout the same branch of the Stable Linux RT Kernel

Rebase …

Creating a Rebased Linux-RT Branch

9

A developer can create their own rebased Linux-RT branch from a
customized kernel using rebase

Example steps ….

git clone http://git.rocketboards.org/linux-socfpga.git

cd linux-socfpga

git fetch linux-socfpga

git checkout -b socfpga-3.10-ltsi-rt-rebase origin/socfpga-3.10-ltsi

git remote add linux-rt git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-stable-rt.git

git fetch linux-rt

git checkout –b linux-rt-3.10 linux-rt/v3.10-rt

git checkout socfpga-3.10-ltsi-rt-rebase

git rebase linux-rt-3.10 …

Iterate: Resolve conflicts, git rebase –continue

http://git.rocketboards.org/linux-socfpga.git
http://git.rocketboards.org/linux-socfpga.git
http://git.rocketboards.org/linux-socfpga.git

Building and Testing the Real Time Kernel

10

CONFIG_PREEMPT_RT_FULL

High Resolution Timer

Make sure power management is off

Build test …
– allconfig

– Allmodconfig

See online tutorial
– https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO

https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO

Evaluating Latency

11

Comparing averages or max values may not yield interesting results –
need comparative statistics to see full potential of latency jitter benefits.

Measurement Methodology

– Benchmark uses get time of day as a way to measure request to response latency,

multiple block memory read/write threads, multiple ping floods

– Collect 5000 samples, collect into bins for a histogram

– Collect “online” statistics for mean, skew, kurtosis, and percentiles

– Statistics given are accurate to within two decimals points with 95% confidence

Altera’s Socfpga-3.10-ltsi kernel without RT Preempt patches

Altera’s Socfpga-3.10-ltsi-rt kernel – Same as above with RT Preempt
patches applied

Measured on Altera’s Cyclone 5 SOC

Characteristic Workload

12

Multiple ping floods – simultaneous transmit and receive network
traffic

Dedicated memory thrashing threads per CPU
– Large block memory allocation, random reads and writes

Dedicated threads per CPU uses clock_gettime and
clock_nanosleep to cycle threads through process states

Difference between requested sleep time and measured sleep time
is defined to be “scheduling latency” and collected for comparison

User could create custom workload that’s characteristic of their
system design

Disclaimer: This is not intended to be exemplary for all RT use cases!

Data Collection Core for Measurements and Comparison

13

ret = clock_gettime(clock[ptctx->clksrc], (&now));

if (ret != 0) {

 fail();

}

req.tv_sec = 0;

req.tv_nsec = 100*(1000*1000);

ret = clock_nanosleep(clock[ptctx->clksrc], 0, &req, NULL);

if (ret != 0) {

 fail();

}

ret = clock_gettime(clock[ptctx->clksrc], (&next));

if (ret != 0) {

 fail();

}

diff = calcdiff(next, now) ;

int delta = (int)(diff-timens(req))/1000;

ptctx->pm_q5->push(delta);

ptctx->pm_q50->push(delta);

ptctx->pm_q99->push(delta);

ptctx->pm_q95->push(delta);

ptctx->pstats->push(delta);

Statistics Collection

14

Percentiles collected “online” using the Piecewise Parabolic Method

Means, Standard Deviation, and data moment statistics collected in

real time using optimized “online” algorithms for collecting statistics
– See Welford’s Algorithm – efficient and numerically stable

– Methods presents by Timothy Terriberry used to maintain and compute higher

order data moments (standard deviation, skew and kurtosis).

Implemented as a simple, portable, reusable C++ class for

applications

Cumulative and moving averages, standard deviation, skewness,

kurtosis, and percentiles.

Statistics Review

15

Scheduling Latency Jitter Comparison

16

0

50

100

150

200

250

-1
0
0

-9
3

-8
6

-7
9

-7
2

-6
5

-5
8

-5
1

-4
4

-3
7

-3
0

-2
3

-1
6 -9 -2 5

1
2

1
9

2
6

3
3

4
0

4
7

5
4

6
1

6
8

7
5

8
2

8
9

9
6

1
0

3

1
1

0

1
1

7

1
2

4

1
3

1

1
3

8

1
4

5

1
5

2

1
5

9

1
6

6

1
7

3

1
8

0

1
8

7

1
9

4

O
c
c
u

rr
e
n

c
e
 C

o
u

n
t

Latency Jitter in Microseconds

3.10 Kernel with RT Preempt Patch, Fully Loaded

Thread 0

Thread 1

Thread 2

Thread 3

μ = ~67

σ = ~12

Skew = ~0.1

Kurtosis = ~2

5th Perc = ~46

95th Perc = ~86

99th Perc = ~100

-σ

μ

σ

5th

Perc

95th

Perc 99th

Perc

0

20

40

60

80

100

120

140

160

180

-1
0
0

-9
3

-8
6

-7
9

-7
2

-6
5

-5
8

-5
1

-4
4

-3
7

-3
0

-2
3

-1
6 -9 -2 5

1
2

1
9

2
6

3
3

4
0

4
7

5
4

6
1

6
8

7
5

8
2

8
9

9
6

1
0

3

1
1

0

1
1

7

1
2

4

1
3

1

1
3

8

1
4

5

1
5

2

1
5

9

1
6

6

1
7

3

1
8

0

1
8

7

1
9

4

O
c
c
u

rr
e
n

c
e
 C

o
u

n
t

Latency Jitter in Microseconds

Vanilla 3.10 Kernel, Fully Loaded

Thread 0

Thread 1

Thread 2

Thread 3

μ = ~75

σ = ~67

Skew = ~30

Kurtosis = ~1000

5th Perc = ~46

95th Perc = ~100

99th Perc = ~110

μ

σ -σ

5th

Perc

95th

Perc

99th

Perc

Observations

17

Mean comparison shows a clear improvement from vanilla

kernel to RT kernel.

Review of other statistics show that outliers are greatly reduced

in RT kernel (skewness and kurtosis).

Standard deviation is greatly improved in RT kernel

The 5th percentile is about the same – indicating a “hard” lower

bound.

Thank You

References

19

LTSI Update : http://lwn.net/Articles/484337/

Real Time Preemption Overview : http://lwn.net/Articles/146861/

Altera SOCFPGA LTSI-RT Kernel
– http://www.rocketboards.org/foswiki/Documentation/AlteraSoCLTSIRTKernel

Altera GIT Repositories http://rocketboards.org/gitweb/

http://lwn.net/Articles/484337/
http://lwn.net/Articles/484337/
http://lwn.net/Articles/146861/
http://lwn.net/Articles/146861/
http://www.rocketboards.org/foswiki/Documentation/AlteraSoCLTSIRTKernel
http://www.rocketboards.org/foswiki/Documentation/AlteraSoCLTSIRTKernel
http://www.rocketboards.org/foswiki/Documentation/AlteraSoCLTSIRTKernel
http://rocketboards.org/gitweb/
http://rocketboards.org/gitweb/

Welford’s Method

20

Single pass algorithm – useful for online data.

A “current” value can be maintained as data samples become

available.

Numerical stability is pretty good

Computationally efficient

This algorithm yields mean, standard deviation, and variance.

𝑀1 = 0, 𝑆1 = 0

𝑀𝑖 = 𝑀𝑖−1 +
𝑥𝑖 − 𝑀𝑖−1

𝑖

𝑆𝑖 = 𝑆𝑖−1 + 𝑥𝑖 − 𝑀𝑖−1 𝑥𝑖 − 𝑀𝑖

Equation 4 - Welford's Method

Higher order moments ….

21

Central moments are

maintained

Updated by a “push” operation

as samples arrive

Numerically stable

𝛿 = 𝑥 − 𝑚

𝜇 = 𝑚′ = 𝑚 +
𝛿

𝑛

𝑀2
′ = 𝑀2 + 𝛿2

𝑛 − 1

𝑛

𝑀3
′ = 𝑀3 + 𝛿3

𝑛 − 1 𝑛 − 2

𝑛2 −
3𝛿𝑀2

𝑛

𝑀4
′ = 𝑀4 +

𝛿4 𝑛 − 1 𝑛2 − 3𝑛 + 3

𝑛3

+
6𝛿2𝑀2

𝑛2 −
4𝛿𝑀3

𝑛

Equation 5 - Central Moments

Difference Equations

P2 Method

22

Maintains 5 markers on a
cumulative distribution
curve

Sample arrives, markers
are updated

Markers correspond to p/2,
p, (1+p)/2 and the
maximum quantile

Heights are adjusted using
a Piecewise Parabolic (P2)
formula.

X(1) X([(n-1)p+1]) X(n)

Marker 5

Marker 4

Marker 3

Marker 2

Marker 11/n

1.0

Probability

(X≤ x)

