

Are we headed for a complexity apocalypse for embedded SoCs

Matthew Locke Director, Linux Development Center Texas Instruments

1

\17

TI OMAP5430 SoC

TI OMAP5430 SoC

Complexity Factors

Squeeze more in

Physical limitations – size, power, thermal

Focused Differentiation

Compute requirements

Complexity variables

Time to Market pressure is not shrinking

The Software Problem

- -Does everything go upstream?
- -Do some features become "product" only?
- -How does the kernel evolve to handle this complexity?
- -Can it evolve fast enough?
- -Who is doing all this work?

Change how we think and work – Software starts earlier – Hardware and software relationship – Software led decisions

What's the solution?

Shared Engineering

- Linux Foundation
 - Linaro
- Open Engineering?

What's the solution?

Yes, must continue to upstream

- Device Tree
- Dmaengine
- pinctl
- Common clock framework
- rpmsg

What's next

