
Not Really, But Kind of Real Time
Linux

Sandra Capri, CTO, Ambient Sensors, LLC

sandra.capri@ambientsensors.com

“Time is an illusion.”
 - Albert Einstein

“Time is an illusion.”
 - Albert Einstein

“… Lunchtime doubly so.”
 - Douglas Adams

Question

Question
Does a small embedded Linux platform have

enough determinism to serve as a device
controller?

Why would this be difficult for a
Linux system to do anyway?

Why would this be difficult for a
Linux system to do anyway?

TASK A

Interrupt - Wakes up B

TASK B

TASK A (cont)

...any missed deadline is a
system failure.

Hard Real Time

… allows for frequently missed
deadlines, and as long as tasks are
timely executed, their results continue to
have value.

Soft Real Time

If it’s a matter of life or death, please
don’t depend on soft real time, or
anything I might say in this talk

My Disclaimer

PREEMPT_RT patches - removes all
unbounded latencies

Real Time Linux

Real Time Linux Presentations

Andreas Ehmanns’ 2017 ELC talk -
“Real Time Linux on Embedded Multicore
Processors”

Julia Cartwright’s 2018 ELC - “What Every Driver
Developer Should Know About RT”

Targets: Raspberry Pi 3 and Beaglebone Black.

Can a Linux SBC control a GPIO to
create a “very accurate” pulse width ?

Measure to see if they meet the “very accurate”
pulse width criteria.

Pulse Train - Assert and Deassert a
GPIO to generate a series of pulses.

● Busy/wait loop (e.g. udelay)
● Allow the OS put the process to sleep?
● Kernel Space vs. User Space Accuracy

What is the Most Accurate Method?

1. Mark the time & assert the GPIO line.
2. Usleep (not a busy/wait).
3. Clear the GPIO line & mark the time.
4. Compare times and keep extremes

User-Space Program - first pass

Results: no latency minimization (control)

ideal pulse shortest pulse longest pulse

(usec) (rounded usec) (rounded usec)

10,000 10,060 14,000 (some times > 20,000 usec)

 1,000 1,060 7,100 (some times > 9,000 usec)

 100 140 2,900 (some times > 6,200 usec)

 10 30 1,500 (some times > 6,900 usec)

ideal pulse shortest pulse longest pulse

(usec) (rounded usec) (rounded usec)

10,000 10,060 14,000 (some times > 20,000 usec)

 1,000 1,060 7,100 (some times > 9,000 usec)

 100 140 2,900 (some times > 6,200 usec)

 10 30 1,500 (some times > 6,900 usec)

Busy-work user space processes!

Wait: What’s up with These Long Times?

● Scheduling policy/priority
● Reserve a core
● Lock the task in memory

Ways to stop Linux from pulling the rug
(core) out from under us

ideal pulse shortest pulse longest pulse

(usec) (rounded usec) (rounded usec)

--

10,000 10,024 10,092

 1,000 1,009 1,097

 100 109 179

 10 15 97

The times look much better with these system tweaks

User Space Results (minimizing latency)

User Space Results (minimizing latency)

● Scheduling policy/priority
● Reserve a core
● Direct GPIO writes
● Disable kernel preemption
● Sleep vs. busy/wait
● CPU stalls & run time throttling

Kernel Space

ideal pulse shortest pulse longest pulse

(usec) (rounded usec) (rounded usec) average wait mechanism

10,000 10,009 10,093 10,040 usleep (kernel sleep)

 1,000 1,007 1,095 1,036 usleep (kernel sleep)

 100 107 151 114 usleep (kernel sleep)

 10 14 74 22 usleep (kernel sleep)

Kernel Results - Kernel Preemption On

ideal pulse shortest pulse longest pulse

(usec) (rounded usec) (rounded usec) average wait mechanism

10,000 10,000 10,072 10,005 udelay (busy wait)

10,000 10,009 10,093 10,040 usleep (kernel sleep)

 1,000 1,000 1,062 1,002 udelay (busy wait)

 1,000 1,007 1,095 1,036 usleep (kernel sleep)

 100 100 170 101 udelay (busy wait)

 100 107 151 114 usleep (kernel sleep)

 10 10 87 11 udelay (busy wait)

 10 14 74 22 usleep (kernel sleep)

Kernel Results - Kernel Preemption On

Kernel Results - Kernel Preemption On

Kernel Results - Kernel Preemption On

ideal pulse shortest pulse longest pulse

(usec) (rounded usec) (rounded usec) average wait mechanism

10,000 10,000 10,063 10,003 udelay (busy wait)

 1,000 1,000 1,060 1,002 udelay (busy wait)

 100 100 152 100 udelay (busy wait)

 10 10 88 11 udelay (busy wait)

Kernel Results - Kernel Preemption Off

Kernel - Do we really own the core?

Kernel - Do we really own the core?

• Single core ARM (for Linux)
• 2 PRU cores

BeagleBone Black: Just a Single Core?

Cortex A8

L3 Interconnect

PRU0 PRU1

Caches
RAM RAM

Interconnect

• No Linux on the PRUs; write your own thread.
• No OS latency!
• The PRUs and the A8 can communicate

See Rob Birkett’s 2015 ELC presentation:
“Enhancing Real-Time Capabilities with the PRU”.

Linux and the PRUs

• Write firmware for the PRUs
• Use Linux driver to load it on the PRUs
• Configure with DT entries
• Set up comm between A8 and PRUs

See Jason Kridner’s video: “Using the BeagleBone Real-time
Microcontrollers” at http://beaglebone.org/pru

How to use the PRUs

• Woah - PRUs are very accurate.
• Error on order of 10s of nanoseconds.
• Forget the 10msec pulse, how does a 25usec

pulse look?

BeagleBone Black Results

BeagleBone Black 25 usec pulses

BeagleBone Black 25 usec pulses

• No impact on the PRU: they run on the A8
core.

• Heavily-loaded system should not affect the
PRU

What About The Busy Work Processes?

• Do you need deterministic control, and feel comfortable writing threads
for the PRUs?

• Do you prefer to keep your code in Linux, and are ok with delays in the
~100usec range?

So Which One to Use? BBB or RPi?

• IRQs - max delay from event to ISR running
(RPi: interrupt affinity, BBB: dedicated PRU)

• Cache misses (lock code in L1 cache)
• Investigate advantages to driving SPI instead

of GPIO?

Possible Future Investigation

https://www.ambientsensors.com

Click on the “Downloads” tab (which is currently
under the “Game Changers” tab)

sandra.capri@ambientsensors.com

To get to the Whitepaper

https://www.ambientsensors.com

