
Intelligent Power Allocation for
Consumer & Embedded
Thermal Control

Ian Rickards

ELC San Diego

ARM Ltd, Cambridge UK

5-April-2016

Non-Confidential © ARM 2015 2

Existing Linux Thermal Framework

 Thermal trip mechanism using cooling devices

 Originally designed to turn on fans.

‘step_wise’ governor adjusts MHz based on temp change

 Reactive on temperature overshoot

 Fixed power partitioning between different

parts of SoC: GPU, CPU, DSP, video

- does not adapt to current workload

Trip1

Trip0

Solutions currently used in mobile

Linux thermal framework

Custom firmware

Hotplug

Non-Confidential © ARM 2015 3

IPA advancements

 Proactive vs. Reactive Thermal Management

 Continuously adapting response based on

power consumption and thermal headroom

 Closed-loop control uses PID algorithm for

accurate temperature control

 Dynamic Partitioning vs. Fixed

 Optimally allocates power to CPU or GPU

depending on current workload

 Merged in Linux-4.2

 Will benefit all operating systems based on Linux, no patches required

IPA Temp

Time

Non-Confidential © ARM 2015 4

Device

SoC

ARM Intelligent Power Allocation

IPA
(PID control algorithm)

Tdie

Tskin Performance Requests

Allocated Performance

big LITTLE GPU

big LITTLE GPU

Power to Heat

Dynamic Allocation by:

•Performance required

•Thermal headroom

Real-time CPU & GPU

Performance requests

Elements:

•Temperature control

• Power estimation using

model

• Performance allocation

Non-Confidential © ARM 2015 5

Static power

 Area of silicon (mm2)

 Threshold voltage (Vt)

 “Low Vt” implementation faster

(but more leaky)

 “High Vt” implementation slower

 Temperature

Dynamic power

 Pipeline depth/complexity

 Toggling nodes x capacitance x voltage^2

CMOS SoC Power Fundamentals

Compute

capacity

(Performance)

Little

core

Big

core

Power

Static

power

Non-Confidential © ARM 2015 6

Requirements to use IPA

 At least one on-chip temperature sensor

 Ability to passively control power of key System-on-Chip (SoC) IP blocks

 Blocks are ‘big’, ‘LITTLE’, ‘GPU’ – their power is controlled so they are ‘cooling devices’

 Set CPU power cap using max frequency/voltage via cpufreq

 [optional: set other device frequency/voltage via devfreq, e.g. GPU]

 Power models of SoC IP blocks: Frequency/voltage & ‘Utilization’

 Dynamic power model

 Static power model [optional]

 Translate power <–> performance cap

Non-Confidential © ARM 2015 7

IPA Algorithm - Overview

power

allocator

Perf

metrics
CPU

P
o
w

e
r m

o
d
e
l

Request Power

Estimate

Perf

request Maximum

Power

Granted Performance

Perf

metrics
GPU

P
o
w

e
r m

o
d
e
l

Request Power

Estimate

Perf

request Maximum

Power

Granted Performance

Perf

metrics
…

P
o
w

e
r m

o
d
e
l

Request Power

Estimate

Perf

request Maximum

Power

Granted Performance

Config

Temp.

Monitor

Policy

Governor performs two

tasks:

1. Keeps system within thermal

envelope
 Controls total power budget

 Exploits thermal headroom

2. Dynamic power allocation per

device
 Performance demand & power

models

 Power divided based on what each

device requested. Anything left

over is distributed among the

devices, up to their maximum.

PID

Power

arbitration

Non-Confidential © ARM 2015 8

IPA benefits illustration

IPA

Existing Linux
Step_wise governor

Temp

Tim

e

Power

allocated

GPU

intensive

CPU

intensive

PID accurate temp control Dynamic power allocation

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

little

big

GPU

Optimal ramp up for max performance

Power re-allocation

GPU to CPU as

workload changes

Precise temperature control

Non-Confidential © ARM 2015 9

struct element DT name sysfs (writeable)

switch_on temperature trip-point@0 trip_point_0_temp Temperature above which IPA starts operating

(first passive trip point – trip 0)

desired_temperature trip-point@1 trip_point_1_temp Target temperature

(last passive trip point – trip 1)

weight contribution cdevX_weight Weight for the cooling device

sustainable_power sustainable-power sustainable_power Max sustainable power

k_po [not h/w property] k_po Proportional term constant during temperature overshoot

periods

k_pu [not h/w property] k_pu Proportional term constant during temperature undershoot

periods

k_i [not h/w property] k_i PID loop's integral term constant (compensates for long-term

drift)

When the temperature error is below ‘integral_cutoff’, errors

are accumulated in the integral term

k_d [not h/w property] k_d PID loop's derivative term constant (typically 0)

integral_cutoff [not h/w property] integral_cutoff Typically 0 so cutoff not used

Setup
Porting parameters sysfs location: /sys/class/thermal/thermal_zoneX/:

Non-Confidential © ARM 2015 10

Power allocator

2 passive trip points

trip-point@0

trip-point@1

DT registering thermal_zone and trip points
 thermal-zones {

 skin {

 polling-delay = <1000>;

 polling-delay-passive = <100>;

 sustainable-power = <2500>;

 thermal-sensors = <&scpi_sensor0 3>;

 trips {

 threshold: trip-point@0 {

 temperature = <55000>;

 hysteresis = <1000>;

 type = "passive";

 };

 target: trip-point@1 {

 temperature = <65000>;

 hysteresis = <1000>;

 type = "passive";

 };

 };

 cooling-maps {

 map0 {

 trip = <&target>;

 cooling-device = <&cluster0 0 4>;

 contribution = <1024>;

 };

 map1 {

 trip = <&target>;

 cooling-device = <&cluster1 0 4>;

 contribution = <2048>;

 };

 map2 {

 trip = <&target>;

 cooling-device = <&gpu 0 4>;

 contribution = <1024>;

 };

Currently only trip-points, sustainable-
power and weights can be specified in
DT as these are direct h/w properties

When using DT, boot happens with
defaults and userspace can change it by
writing to sysfs files.

Switch_on

55degC

Target temp

65degC

Non-Confidential © ARM 2015 11

 Thermal zones structured as tree

(supports multiple temp sensors)

 Power restricted by cooling devices

 Allocated power is minimum of that

requested by all thermal zones

 Rapid limiting from CPU cluster temp sensor

 Additional limiting from motherboard sensor

Thermal zone hierarchy

Device tz

SoC tz
Big

tz
Little tz

Backlight

GPU tz

Temp sensor

Non-Confidential © ARM 2015 12

 GeekBench alternates between single and

multithreaded phases

+ On big cores frequency is adjusted automatically

based on parallel load

 When 4 cores are active frequency is lower

+ On LITTLE cores frequency follows load

 When 4 cores are active frequency is lower

IPA in action on 4x4 big.LITTLE
b

ig

High freq

Low freq

L
IT

T
L

E

Lo
ad

Fr

eq
.

High freq

Low freq

Lo
ad

Fr

eq
.

So
C

 t
em

p

70 C

0 C

400%

100%

400%

100%

Non-Confidential © ARM 2015 13

Changing Capacities

LITTLE big

capacity

LITTLE big

Thermal Capping

Task

Task

Non-Confidential © ARM 2015 14

Changing Capacities – Energy Aware Scheduling

LITTLE big

capacity

LITTLE big

Thermal Capping Task

Task

In EAS r5.2 git

http://linux-arm.org/git?p=linux-power.git

LKML posting planning for EAS RFCv6

http://linux-arm.org/git?p=linux-power.git
http://linux-arm.org/git?p=linux-power.git
http://linux-arm.org/git?p=linux-power.git
http://linux-arm.org/git?p=linux-power.git
http://linux-arm.org/git?p=linux-power.git
http://linux-arm.org/git?p=linux-power.git

Non-Confidential © ARM 2015 15

Static Power - Hotplug

 Turn core OFF
 Start with ‘big’

 Progressively hotplug more

cores

 Issues
 Latency of thermal response

 Ping-pong of core due to large

discrete steps in power reduction

LITTLE

capacity

LITTLE big big LITTLE LITTLE big big

core hotplugged

Non-Confidential © ARM 2015 16

Summary

 ‘Intelligent Power Allocation’ now available for the Linux kernel

 IPA is designed to maximise performance in the thermal envelope:

 Proactively adjusts available power budget, based on device temperature

 Allocates power dynamically between CPU/GPU, based on workload

 Results show:

 More accurate thermal control

 Better performance than existing governors in Linux thermal framework

 Future: Core idling / Unified energy model

Non-Confidential © ARM 2015 17

Demo - Technical info

 Odroid-XU3 Exynos 5422 (4xCortex-A15 + 4xCortex-A7)

 Automation: ARM ‘Workload Automation’

 ipython analysis and tuning flow using TRAPpy

 See Patrick Bellasi presentation “LISA & friends” talk @ 4.20pm

 ARM “Ice Cave” demo => GPU intensive

 Antutu – varying CPU/GPU load

 IPA released in Linux 4.2, Linaro LSK 3.10 & 3.18

 Tooling on https://github.com/arm-software

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.pollin.de/shop/dt/NjI2OTgxOTk-/Bausaetze_Module/Entwicklerboards/ODROID_XU3_Lite_Einplatinen_Computer_SAMSUNG_Exynos_5422_2_GB_USB_3_0.html&ei=SowmVcioNo2Uav24ggg&bvm=bv.90237346,d.d24&psig=AFQjCNEE-Wb5G4OMByqEjq8gBG1SCHqRRw&ust=1428676004921787

Thank you

