
User Space Dynamic Instrumentation
based on kprobe

04.06.2009
Samsung Advanced Institute of Technology &

Samsung Research Center in Moscow
Jaehoon

Jeong(hoony_jeong@samsung.com)

Ekaterina Gorelkina(e.gorelkina@samsung.com)
Alexey

A. Gerenkov(a.gerenkov@samsung.com)

Contents

• Overview of Dynamic Instrumentation
• Overview of Kprobe

infra-structures

• Approaches for user space dynamic instrumentation
– Introduction of SWAP(System-wide Analyzer of Performance)
– Goals and 3 problems
– SWAP -

Architecture and procedure summary

– SWAP -

Instrumentation result
– SWAP -

Overhead

– Future work

• Open Source Plan

Classification of Analysis

• Static vs

Dynamic Analysis
• Source code vs

Binary Analysis

Static Dynamic

Source code Static Source Analysis Dynamic Source Analysis

Binary Static Binary Analysis Dynamic Binary Analysis

Dynamic Binary Analysis can instrument software
without modification, re-build and reload.

However, it is not easy!

”Dynamic Binary Analysis and Instrumentation or Building Tools is

Easy”
2004, Nichola

Nethercote

• Kernel Developer : I wish I could add a debug statement easily without
recompile & rebuild.

• Technical Supporter: How can I get this additional data that is already
available in the kernel easily and safely?

• Application Developer: How can I improve performance of my application
on Linux?

Why Dynamic Instrumentation?

• CE Product Developer:
• How can I analyze system behaviors in both kernel and application

simultaneously?
• Right before mass-production, how can I trace system events without

modification of the current product?

From : RH2_Systemtap_OLS_2006

General Requirements:

CE Specific Requirements:

Current Dynamic Instrumentation Tools

• Dtrace
– Sun Solaris dynamic tracing framework for kernel and application.
– D programming languages support for tracing program.
– Instrumentation of both kernel and user space.
– http://www.sun.com/software/solaris/ds/dtrace.jsp

• Systemtap
– Linux dynamic instrumentation tool based on kprobe(kernel) and utrace/uprobe(user

space)

– Command line interface and scripting language
– Open Source project(Red

Hat, IBM, Intel, Hitachi, Oracle etc)
– http://sourceware.org/systemtap/

• Dyninst
– A set of APIs to permit the insertion of code into a running program.
– Paradyn

-

dynamic instrumentation tool based on dyninst

API.
– User space only
– Developed by University of Maryland
– http://www.dyninst.org/

Kprobe

infra-structures overview

• Kprobe

is an infra-structure for dynamic instrumentation in Linux.
– Designed for kernel space dynamic instrumentation.
– 3 probing methods :

• Kprobe

: general use for any instruction(before/after execution of instruction)
• Jprobe

: special case for function entry(function

argument when function is
called)

• Kretprobe

: special case for function exit(function

return value when function
is returned)

Users can make their own handler for
specific probepoints.

- Register/unregister probepoints
- Manage kprobe

data structure

- Arch. specific break instruction
- Exception handling mechanism

Kprobe

• It replaces the program inst. with a break instruction at the probepoint.
• Pre-handler is a user-defined routine that runs just before the inst.
• Original instruction is executed during exception.
• Post-handler is a user-defined routine that runs just after the inst.
• After return from exception, the next inst. is executed.

Probing the Guts of Kprobes

: 2006 Linux Symposium

Jprobe

• Use the mirror prototype of original functions.
• Use its own pre-handler (setjmp_pre_handler) to save function arguments

and CPU registers. After that, invoke one more break.
• Set up single-stepping and execute the original inst..
• Last steps are the same with original kprobe.

2005 Kprobe articles : lwn.net/Articles/132196/

kretprobe

• Set a break exception on function entry.
• When an exception is occurred, change the return address of function.
• When function is returned, go to kretprobe_tampoline.
• Save function return value and go to the original return address.

Probing the Guts of Kprobes

: 2006 Linux Symposium

• Overview of Dynamic Instrumentation
• Overview of Kprobe

infra-structures

• Approaches for user space dynamic instrumentation
– Introduction of SWAP(System-wide Analyzer of Performance)
– Goals and 3 problems
– SWAP -

Architecture and procedure summary

– SWAP -

Instrumentation result
– SWAP -

Overhead

– Future work

• Open Source Plan

Contents

Introduction of SWAP
 (System-wide Analyzer of Performance)

• A dynamic instrumentation tool developed by Samsung
• Kprobe

ported for ARM and MIPS architecture

• A small agent to control and show dynamic instrumentation on target
– Based on ncurses

UI

• Function level traceability in the kernel space.

Ex) control of dynamic instrumentation Ex) traced events

Goals and 3 problems

• Goals:
– No intrusion of user space applications
– Simultaneous instrumentation of both kernel and user space
– Use of kprobe

infra-structures for user space dynamic

instrumentation

• Problems encountered during implementation:
1.

Demand-paging problem

2.

SSIL(single-stepping In Line), SSOL(Single-Stepping Out of
Line)

3.

Return handler

1. Demand-Paging(1/2)

Possible Solutions:
• Load all pages containing

probepoints

–

No more demand-

 paging!!

But some questions:
• Is there enough physical memory?
• Would applications behave the

same?
• Is it ok not to see any page-faults?

• Problem definition :
• Kernel is always loaded in physical memory.

• Probepoints

can be inserted at any time.
• Application is loaded in physical memory on demand.

• How can we replace instructions with probepoints

for
applications?

?

• Our approaches
• Maintain a list of probepoints

for user specified functions

• Instrument a page-fault handler in kernel with kretprobe

in order to

get information about loaded pages.
• Check the probepoint

list and insert probepoints

on loaded page

when page-fault handler returns

1. Demand-Paging(2/2)

Kprobe

struct

• General approaches for our goals:
– Instrument both kernel and user-space simultaneously.
– Use a break instruction on a probepoint.
– Use the same mechanism for kernel and user space.

• Use kprobe

infra-structures.
• Execute handlers for both kernel and user in kernel.

– This approach make a single stepping problem.

Application Code
(User Space)

Original inst

Break inst

Break inst

address

address

Original inst

exception

Kprobe

handler

Kernel Space

Collect information
here

2. SSIL or SSOL problem(1/3)

2. SSIL or SSOL problem(2/3)

• Problem definition :
– SSIL(single-stepping inline) or SSOL(single-stepping out of line)
– Kprobe

uses SSOL not to miss a probepoint.

– For the instrumentation of user applications in kernel space, SSOL is
not acceptable.

• Application instructions should be executed in user space.

SSIL case

Original inst

Break inst

address

Original inst

Break inst

Original inst

address

Original inst

Break inst

Next inst

Original inst

Move pc

SSOL case

Original inst is executed
in another place

Original inst is executed
in original place.

2. SSIL or SSOL problem(3/3)
• Our approach :

– Use SSIL for function-entry instrumentation
– In order to restore and execute an original inst., use the break-inst. in the

location of the 2nd

instr..
– During this sequence, set “preemption disable”

for preventing from preemption.

1st inst

Break inst

Page fault
- modify 1st

inst.

Function
entry

2nd inst

2nd inst

Break inst

1st inst

1st

exception
-Go to kernel space.
- Disable preemption.
-

Do instrumentation.
- Restore 1st

inst. with orig.
- Modify 2nd

inst
- go to 1st

inst.

Execute 1st

inst.

2nd

exception
- Modify 1st

inst. for next time.
- Restore 2nd

inst.
- Enable preemption.
- go to 2nd

inst.

2nd inst

Break inst

Execute 2nd

inst.

3. Return handler (1/2)
• Problem definition :

– From a slide no. 9, kretprobe use its trampoline in the same address space.
– In this mechanism, trampoline will execute in user-space.
– We want to instrument user-space events in kernel-space.

Application in User-space

Same address space with application.
How can we move this trampoline
into kernel space.

Kretprobe mechanism

3. Return handler (2/2)

• Our approach :
– Starting from the function entry point, when the 1st

inst is invoked, return address is
changed with the 2nd

instruction address.
– Replace the 2nd

inst. w/ the break inst.
– During execution, the 2nd

inst. causes an exception to occur and retprobe_trampoline in
kernel space is executed.

– In the exception handler, go to the universal trampoline to instrument a function return-

value .

– This trampoline is common for both kernel and user function.

SWAP -

Architecture Summary

• SWAP Tracing tool
– Control instrumentation modules to insert/remove probepoints.

• SWAP Trace Buffer
– Use a common buffer to save both kernel and user space traced events.

• SWAP Implementation Module
– Manage probepoints and their handlers based on kprobe infra-structures.

SWAP-

Procedure summary(1/3)

Original inst

Break inst

Address 1
Address 1

Probepoint list

Address 2

Application

Original inst

Break inst

Page-fault hander
- Load page

Address 1

Page fault

Execute orig inst

Break instAddress 1 exception
exception
hander

Page-fault Ret-handler
- Set break

Probe handler
- Instrumentation
- change return addr.
- restore orig inst
- set break

Address 1

Break inst

Procedure summary(2/3)

1st

inst.

Function body is executed!!

Address 1

Break inst exception exception
hander

Probe handler
-Set break (1st, 3rd)
- restore orig. (2nd)

2nd

inst

Address 1 Break inst

Break inst exception exception
hander

Probe handler
- Set break (2nd)
- restore orig. (3rd)

3rd

inst.

Address 1 Break inst

Break inst

Procedure summary(3/3)

Return to the original return address

3rd

inst.

Address 1 Break inst

Break inst

Return inst.

exception exception
hander

Kret trampoline
- instrumentation.

SWAP -

Implementation Result

• In the SWAP tracing tool, check an application and its lib to be probed.
• Start tracing, start an application, and stop tracing.
• Show traced events.

SWAP -

Instrumentation Overhead

• CPU load overhead
– original = 6,87%
– libc

instrumentation = 13,27%
– application instrumentation =

22,23%

CPU load produced by MP3 codec

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

0 10 20 30 40 50 60 70 80

seconds

Original load Instrumented load

• Page-fault overhead
Without instrumentation:
Maximum Page_Fault_Duration

= 222 usec
Average Page_Fault_Duration

= 64 usec

Libc

instrumentation:
Maximum Page_Fault_Duration

= 334280 usec
Average Page_Fault_Duration

= 7740 usec

Application instrumentation:
Maximum Page_Fault_Duration

= 8049 usec
Average Page_Fault_Duration

= 199 usec

It depends on
the number of probepoints.

SWAP -

Future work

• Reduce instrumentation overhead
– Reduce the number of break instructions.
– Optimize lookup overhead of probepoints

• Stripped binaries….
– Problem: Most CE products use stripped binaries to minimize

resources.
• Can not extract symbol information from a stripped binary.

– Solution: a cross instrumentation environment between target
and host

• Target : instrumentation only
• Host : select a probepoint

, make its handler, and analyze traced events.

• similar to a cross-compile environment

Open Source Plan

• Now, cleaning source code and fixing bugs.
– Plan to open SWAP by 3Q 2009.
– Plan to post on the CELF website or Sourceforge.net.

• Your ideas/inputs/comments are welcomed!!!

	User Space Dynamic Instrumentation �based on kprobe
	Contents
	Classification of Analysis
	Why Dynamic Instrumentation?
	Current Dynamic Instrumentation Tools
	Kprobe infra-structures overview
	Kprobe
	Jprobe
	kretprobe
	Contents
	Introduction of SWAP�(System-wide Analyzer of Performance)
	Goals and 3 problems
	1. Demand-Paging(1/2)
	1. Demand-Paging(2/2)
	슬라이드 번호 15
	2. SSIL or SSOL problem(2/3)
	2. SSIL or SSOL problem(3/3)
	3. Return handler (1/2)
	3. Return handler (2/2)
	SWAP - Architecture Summary
	SWAP- Procedure summary(1/3)
	Procedure summary(2/3)
	Procedure summary(3/3)
	SWAP - Implementation Result
	SWAP - Instrumentation Overhead
	SWAP - Future work
	Open Source Plan

