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Classification of Analysis

 Static vs Dynamic Analysis
« Source code vs Binary Analysis

I T 7

Source code  Static Source Analysis  Dynamic Source Analysis
Binary Static Binary Analysis Dynamic Binary Analysis

Dynamic Binary Analysis can instrument software
without modification, re-build and reload.

However, It is not easy!

"Dynamic Binary Analysis and Instrumentation or Building Tools is Easy”
2004, Nichola Nethercote



Why Dynamic Instrumentation?

General Requirements:

« Kernel Developer : I wish I could add a debug statement easily without
recompile & rebuild.

» Technical Supporter: How can I get this additional data that is already
available in the kernel easily and safely?

« Application Developer: How can I improve performance of my application
on Linux?

From : RH2_Systemtap_OLS_2006

CE Specific Requirements:

e CE Product Developer:
« How can I analyze system behaviors in both kernel and application
simultaneously?
* Right before mass-production, how can I trace system events without
modification of the current product?



Current Dynamic Instrumentation Tools

e Dtrace
— Sun Solaris dynamic tracing framework for kernel and application.
— D programming languages support for tracing program.
— Instrumentation of both kernel and user space.
— http://www.sun.com/software/solaris/ds/dtrace.jsp

. Systemtap

Linux dynamic instrumentation tool based on kprobe(kernel) and utrace/uprobe(user
space)

— Command line interface and scripting language
— Open Source project(Red Hat, IBM, Intel, Hitachi, Oracle etc)
— http://sourceware.org/systemtap/

e Dyninst
— A set of APIs to permit the insertion of code into a running program.
— Paradyn - dynamic instrumentation tool based on dyninst APL
— User space only
— Developed by University of Maryland
— http://www.dyninst.org/



Kprobe infra-structures overview

« Kprobe is an infra-structure for dynamic instrumentation in Linux.
— Designed for kernel space dynamic instrumentation.

— 3 probing methods :
» Kprobe : general use for any instruction(before/after execution of instruction)
» Jprobe : special case for function entry(function argument when function is

called)

» Kretprobe : special case for function exit(function return value when function

is returned)

User-defined probe handlers

Kemel Module

b

~

KProbes Manager

Architecture Independent Layer

~

b

KProbes Arch Dependent Layer
KProbes Exception Handlers
Kernel Exception Handling

Architechure Dependent Layer

Users can make their own handler for
specific probepoints.

- Register/unregister probepoints
- Manage kprobe data structure

- Arch. specific break instruction
- Exception handling mechanism



Kprobe

It replaces the program inst. with a break instruction at the probepoint.
Pre-handler is a user-defined routine that runs just before the inst.
Original instruction is executed during exception.

Post-handler is a user-defined routine that runs just after the inst.
After return from exception, the next inst. is executed.

Program text Program text
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pre_handlen)

addr

register_kprobe() reak

point insn
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post_handler()

insn

Probing the Guts of Kprobes : 2006 Linux Symposium



Jprobe

Use the mirror prototype of original functions.

Use its own pre-handler (setjmp_pre_handler) to save function arguments
and CPU registers. After that, invoke one more break.

Set up single-stepping and execute the original inst..
Last steps are the same with original kprobe.

kprobe_handler

Jprobe
breakpoint

post kprobe handler do debug

Execution of a KProbe post_kprobe handler

Execution of a JProbe

2005 Kprobe articles : lwn.net/Articles/132196/



kretprobe

Set a break exception on function entry.

When an exception is occurred, change the return address of function.
When function is returned, go to kretprobe_tampoline.

Save function return value and go to the original return address.

foo() o . bar()
- .
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\ T . nomal retum
—

kretprobe_trampoline()

AR

just a "nop" with a
kprobe on it

Probing the Guts of Kprobes : 2006 Linux Symposium
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Introduction of SWAP
(System-wide Analyzer of Performance)

« A dynamic instrumentation tool developed by Samsung
« Kprobe ported for ARM and MIPS architecture

« A small agent to control and show dynamic instrumentation on target
— Based on ncurses Ul

« Function level traceability in the kernel space.

Trac
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schedule sWapper
.867400 schedule events,/0
.B67826 schedule events,/0
.B68255 schedule sh
.B69041 schedule sh
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.871312 schedule sh
.872024 schedule sh
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.B74755 send_signal sh
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swapper, 140,
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Kernel Instrumentation:

efaults: I-'unctitm: [ Add ]

1 sys_accept ﬂx] send_signal
sys_socketpair [ Remove ]
tep_v4 _rev

tep_v4_do_rev

tcp_send_fin

do_exit
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Goals and 3 problems

e Goals:
— No intrusion of user space applications
— Simultaneous instrumentation of both kernel and user space

— Use of kprobe infra-structures for user space dynamic
Instrumentation

* Problems encountered during implementation:
1. Demand-paging problem

2. SSIL(single-stepping In Line), SSOL(Single-Stepping Out of
Line)

3. Return handler



1. Demand-Paging(1/2)

« Problem definition
« Kernel is always loaded in physical memory.
« Probepoints can be inserted at any time.
« Application is loaded in physical memory on demand.

« How can we replace instructions with probepoints for
applications?
page which is in Possible Solutions:

Plysicalimermony  Load all pages containing
probepoints — No more demand-
Program

ing!!
v i PO
Modify

But some questions:
» Is there enough physical memory?

 Would applications behave the
same?

« Is it ok not to see any page-faults?

SWAP
Instrumentation v

Module

|
I
I
I
I
\/




1. Demand-Paging(2/2)

e Our approaches
« Maintain a list of probepoints for user specified functions

« Instrument a page-fault handler in kernel with kretprobe in order to
get information about loaded pages.

» Check the probepoint list and insert probepoints on loaded page
when page-fault handler returns

Application To Be
Instrumented

/ X
Instrument functions

page fault

/ on loaded page

I

I

I

I

| \ Search _

| return/ =/l Instrumentation
I

I

¢ data

Linux kernel |
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— Use a break instruction on a probepoint.

2. SSIL or SSOL problem(1/3)

General approaches for our goals:
— Instrument both kernel and user-space simultaneously.

— Use the same mechanism for kernel and user space.

Use kprobe infra-structures.
Execute handlers for both kernel and user in kernel.

— This approach make a single stepping problem.

address

Application Code
(User Space)

Kernel Space

Kprobe struct

—  Break inst

/} address

Break inst

Kprobe handler

here

Collect information




2. SSIL or SSOL problem(2/3)

e Problem definition :

— SSIL(single-stepping inline) or SSOL(single-stepping out of line)
— Kprobe uses SSOL not to miss a probepoint.
— For the instrumentation of user applications in kernel space, SSOL is

not acceptable.

» Application instructions should be executed in user space.

SSIL case

Break inst

SSOL case

\

I;address | Originalinst__|

v

Break inst

l

Original inst is executed
in original place.

addre§§

Break inst

—/t Move pc

-

T

Original inst is executed
in another place




2. SSIL or SSOL problem(3/3)

e QOur approach :
— Use SSIL for function-entry instrumentation

— In order to restore and execute an original inst., use the break-inst. in the
location of the 2nd instr..

— During this sequence, set “preemption disable” for preventing from preemption.

Break inst _\\l
Page fault

- modify 1% inst. 2" exception |
- Modify 15t inst. for next time.
- Restore 2 inst.

. - Enable preemption.
Break inst - go to 2" inst.

[ondist ] e

Execute 2Md inst.

Function
entry

1t exception

-Go to kernel space.

- Disable preemption.

- Do instrumentation.

- Restore 15t inst. with orig.
- Modify 2" inst

- go to 1t inst.



3. Return handler (1/2)

Problem definition :

— From a slide no. 9, kretprobe use its trampoline in the same address space.
— In this mechanism, trampoline will execute in user-space.
— We want to instrument user-space events in kernel-space.

Application in User-space

har()

bar()

just a "nop" with a

kprobe on it

Same address space with application.
How can we move this trampoline
into kernel space.

Kretprobe mechanism



3. Return handler (2/2)

e Qur approach :

— Starting from the function entry point, when the 1t inst is invoked, return address is
changed with the 2nd instruction address.

— Replace the 2nd inst. w/ the break inst.

— During execution, the 2 inst. causes an exception to occur and retprobe_trampoline in
kernel space is executed.

— In the exception handler, go to the universal trampoline to instrument a function return-
value .

— This trampoline is common for both kernel and user function.

User function 1 User function 2

trampoline trampoline
return return

exception exception

Break
handler

return -
exception

Trampoline

—
— return

Linux kernel \ Instrumentation Module /




SWAP - Architecture Summary

« SWAP Tracing tool

— Control instrumentation modules to insert/remove probepoints.

e SWAP Trace Buffer

— Use a common buffer to save both kernel and user space traced events.

¢ SWAP Implementation Module

— Manage probepoints and their handlers based on kprobe infra-structures.

SWAP Tracing

Application To Be
Instrumented

instrumentation
info

BREAK
instructions

exceptions

Linux kernel
L

Tool

trace events

ﬁi Application " gyAp Trace | :

Buffer

\Ltrace events

SWAP
Instrumentation |
Module

signal

exceptions
/

\

send_signal

,,,,,,,,,,,,,,,,,,,,,

Application To Be
Instrumented

| app exit
page faults
ffffffffffff L —
do_page_fault do_exit
\ N catch
y catc app exit
catch page fault S
exceptlon‘%rr z
catch Instrumentation .
signal Module Linux
kernel



SWAP- Procedure summary(1/3)

Break inst
p ot
Address 1 robepoint list
Page-fault hander P
- Load page
Address 2

Page-fault Ret-handler

Address 1 Break inst w

exception Probe handler
Address 1 Break inst hander \ - Instrumentation
- change return addr.

- restore orig inst
- set break

Address 1 Original inst Execute orig inst

Break inst



Procedure summary(2/3)

Address 1 1st inst. Probe handler

: -Set break (1st, 3rd)
Break inst exception / - restore orig. (2nd)
hander

Address 1 Break inst
2nd inst Probe handler
, exception | _—>| - Set break (2n)
Siel Lt hander - restore orig. (3rd)
Address 1 Break inst
Break inst
3rd inst.

Function body is executed!!



Procedure summary(3/3)

Address 1 Break inst
Break inst

3rd inst.

Return inst.

Return to the original return address

exception
hander

Kret trampoline
- Instrumentation.




SWAP - Implementation Result

« In the SWAP tracing tool, check an application and its lib to be probed.
« Start tracing, start an application, and stop tracing.
« Show traced events.

Application & Library Instrumentation Trac

Function Process Arguments

Application Path: /fesE _start 716179192,

- 1 1 >
List of Libraries: :00.000864 _1ibc_esu_i 718096432,

001576 _init 718096432,
.002261 call_gmon_st 718096432,
002946 call_gmon_st

.003366 frame_dummy 718096432,
004046 frame_dummy

List of Functions: :00.004465 _ do_global_ 718096432,
.005145 __do_global_

005563 _init

.005974 libc_csu_i

:00.006512 nain 2147450564
Set Configuration from File:_ _ :00.008922 main
:00.009356 __libc_csu_f
:00.010041 _fini
m _ :00.010744 __do_global_
:00.011412 __do_global_
.011462 _fini
.011887 __libc_csu_f




SWAP - Instrumentation Overhead

CPU load overhead
original = 6,87%

libc instrumentation = 13,27%

application instrumentation =
22,23%

CPU load produced by MP3 codec
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» Page-fault overhead

Without instrumentation:

Maximum Page_Fault_Duration = 222 usec
Average Page_Fault_Duration = 64 usec

Libc instrumentation:
Maximum Page_Fault_Duration = 334280 usec
Average Page_Fault_Duration = 7740 usec

Application instrumentation:
Maximum Page_Fault_Duration = 8049 usec
Average Page_Fault_Duration = 199 usec

It depends on
the number of probepoints.



SWAP - Future work

« Reduce instrumentation overhead
— Reduce the number of break instructions.
— Optimize lookup overhead of probepoints

« Stripped binaries....

— Problem: Most CE products use stripped binaries to minimize
resources.
« Can not extract symbol information from a stripped binary.

— Solution: a cross instrumentation environment between target
and host
» Target : instrumentation only
* Host : select a probepoint , make its handler, and analyze traced events.

e similar to a cross-compile environment



Open Source Plan

* Now, cleaning source code and fixing bugs.
— Plan to open SWAP by 3Q 2009.
— Plan to post on the CELF website or Sourceforge.net.

e Your ideas/inputs/comments are welcomed!!!
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