User Space Dynamic Instrumentation
based on kprobe

04.06.2009
Samsung Advanced Institute of Technology &
Samsung Research Center in Moscow
Jaehoon Jeong(hoony_jeong@samsung.com)
Ekaterina Gorelkina(e.gorelkina@samsung.com)
Alexey A. Gerenkov(a.gerenkov@samsung.com)

Contents

Overview of Dynamic Instrumentation
Overview of Kprobe infra-structures

Approaches for user space dynamic instrumentation
— Introduction of SWAP(System-wide Analyzer of Performance)
— Goals and 3 problems
— SWAP - Architecture and procedure summary
— SWAP - Instrumentation result
— SWAP - Overhead
— Future work

Open Source Plan

Classification of Analysis

 Static vs Dynamic Analysis
« Source code vs Binary Analysis

I T 7

Source code Static Source Analysis Dynamic Source Analysis
Binary Static Binary Analysis Dynamic Binary Analysis

Dynamic Binary Analysis can instrument software
without modification, re-build and reload.

However, It is not easy!

"Dynamic Binary Analysis and Instrumentation or Building Tools is Easy”
2004, Nichola Nethercote

Why Dynamic Instrumentation?

General Requirements:

« Kernel Developer : I wish I could add a debug statement easily without
recompile & rebuild.

» Technical Supporter: How can I get this additional data that is already
available in the kernel easily and safely?

« Application Developer: How can I improve performance of my application
on Linux?

From : RH2_Systemtap_OLS_2006

CE Specific Requirements:

e CE Product Developer:
« How can I analyze system behaviors in both kernel and application
simultaneously?
* Right before mass-production, how can I trace system events without
modification of the current product?

Current Dynamic Instrumentation Tools

e Dtrace
— Sun Solaris dynamic tracing framework for kernel and application.
— D programming languages support for tracing program.
— Instrumentation of both kernel and user space.
— http://www.sun.com/software/solaris/ds/dtrace.jsp

. Systemtap

Linux dynamic instrumentation tool based on kprobe(kernel) and utrace/uprobe(user
space)

— Command line interface and scripting language
— Open Source project(Red Hat, IBM, Intel, Hitachi, Oracle etc)
— http://sourceware.org/systemtap/

e Dyninst
— A set of APIs to permit the insertion of code into a running program.
— Paradyn - dynamic instrumentation tool based on dyninst APL
— User space only
— Developed by University of Maryland
— http://www.dyninst.org/

Kprobe infra-structures overview

« Kprobe is an infra-structure for dynamic instrumentation in Linux.
— Designed for kernel space dynamic instrumentation.

— 3 probing methods :
» Kprobe : general use for any instruction(before/after execution of instruction)
» Jprobe : special case for function entry(function argument when function is

called)

» Kretprobe : special case for function exit(function return value when function

is returned)

User-defined probe handlers

Kemel Module

b

~

KProbes Manager

Architecture Independent Layer

~

b

KProbes Arch Dependent Layer
KProbes Exception Handlers
Kernel Exception Handling

Architechure Dependent Layer

Users can make their own handler for
specific probepoints.

- Register/unregister probepoints
- Manage kprobe data structure

- Arch. specific break instruction
- Exception handling mechanism

Kprobe

It replaces the program inst. with a break instruction at the probepoint.
Pre-handler is a user-defined routine that runs just before the inst.
Original instruction is executed during exception.

Post-handler is a user-defined routine that runs just after the inst.
After return from exception, the next inst. is executed.

Program text Program text

o F

pre_handlen)

addr

register_kprobe() reak

point insn

1

post_handler()

insn

Probing the Guts of Kprobes : 2006 Linux Symposium

Jprobe

Use the mirror prototype of original functions.

Use its own pre-handler (setjmp_pre_handler) to save function arguments
and CPU registers. After that, invoke one more break.

Set up single-stepping and execute the original inst..
Last steps are the same with original kprobe.

kprobe_handler

Jprobe
breakpoint

post kprobe handler do debug

Execution of a KProbe post_kprobe handler

Execution of a JProbe

2005 Kprobe articles : lwn.net/Articles/132196/

kretprobe

Set a break exception on function entry.

When an exception is occurred, change the return address of function.
When function is returned, go to kretprobe_tampoline.

Save function return value and go to the original return address.

foo() o . bar()
- .

&
\
b
\
\
Y
\
b ——

| har()

\ T . nomal retum
—

kretprobe_trampoline()

AR

just a "nop" with a
kprobe on it

Probing the Guts of Kprobes : 2006 Linux Symposium

Contents

» Approaches for user space dynamic instrumentation
— Introduction of SWAP(System-wide Analyzer of Performance)
— Goals and 3 problems
— SWAP - Architecture and procedure summary
— SWAP - Instrumentation result
— SWAP - Overhead
— Future work

Introduction of SWAP
(System-wide Analyzer of Performance)

« A dynamic instrumentation tool developed by Samsung
« Kprobe ported for ARM and MIPS architecture

« A small agent to control and show dynamic instrumentation on target
— Based on ncurses Ul

« Function level traceability in the kernel space.

Trac
- i Function Process
schedule sWapper
.867400 schedule events,/0
.B67826 schedule events,/0
.B68255 schedule sh
.B69041 schedule sh
.869517 schedule swWapper
.870414 schedule swapper
.870851 schedule sh
.871312 schedule sh
.872024 schedule sh
.872499 schedule sWapper
.873413 schedule sWapper
.873849 schedule sh
.874330 send_signal sh
.B74755 send_signal sh
.875180 schedule swWap
.877038 schedule swWap
.877479 schedule swWap
.887232 schedule swap
.8B7672 schedule swap

:
B

Arguments
swapper, 140,
0, 98, 1
events/0, 98,
0, 115, 1
sh, 115, 120,
0, 140, O
swapper, 140,
0, 115, 1
0, 116, 1
sh, 116, 120,
0, 140, O
swapper, 140,
0, 116, 1
18, -20735594

Kernel Instrumentation:

efaults: I-'unctitm: [Add]

1 sys_accept ﬂx] send_signal
sys_socketpair [Remove]
tep_v4 _rev

tep_v4_do_rev

tcp_send_fin

do_exit

do_fork

schedule

sys_waitid

sys_wait4

interruptible_sleep_on

[=7]
[7+]

Bk DS NN & &S
& & =]
W 7]

[

=]

X

=]
M

D
[
[
[
[
[
[
[
[
[
[
[

|
1
1
1
1
|
1
1
1
1

& &
|2 I

contig Path: N | 1w)

[oK] [cancel]

0, 116, 1
swap, 116, 12
0, 116, 1
swap, 117, 12
0, 117, 1

& &
(=T = =]

mr.:r.:r.:grurumoo
(=]

[=7]
[=]

=

Ex) control of dynamic instrumentation Ex) traced events

Goals and 3 problems

e Goals:
— No intrusion of user space applications
— Simultaneous instrumentation of both kernel and user space

— Use of kprobe infra-structures for user space dynamic
Instrumentation

* Problems encountered during implementation:
1. Demand-paging problem

2. SSIL(single-stepping In Line), SSOL(Single-Stepping Out of
Line)

3. Return handler

1. Demand-Paging(1/2)

« Problem definition
« Kernel is always loaded in physical memory.
« Probepoints can be inserted at any time.
« Application is loaded in physical memory on demand.

« How can we replace instructions with probepoints for
applications?
page which is in Possible Solutions:

Plysicalimermony Load all pages containing
probepoints — No more demand-
Program

ing!!
v i PO
Modify

But some questions:
» Is there enough physical memory?

 Would applications behave the
same?

« Is it ok not to see any page-faults?

SWAP
Instrumentation v

Module

|
I
I
I
I
\/

1. Demand-Paging(2/2)

e Our approaches
« Maintain a list of probepoints for user specified functions

« Instrument a page-fault handler in kernel with kretprobe in order to
get information about loaded pages.

» Check the probepoint list and insert probepoints on loaded page
when page-fault handler returns

Application To Be
Instrumented

/ X
Instrument functions

page fault

/ on loaded page

I

I

I

I

| \ Search _

| return/ =/l Instrumentation
I

I

¢ data

Linux kernel |

— e e e e e e e eees e e e—e G——e G e G-, cE—

— Use a break instruction on a probepoint.

2. SSIL or SSOL problem(1/3)

General approaches for our goals:
— Instrument both kernel and user-space simultaneously.

— Use the same mechanism for kernel and user space.

Use kprobe infra-structures.
Execute handlers for both kernel and user in kernel.

— This approach make a single stepping problem.

address

Application Code
(User Space)

Kernel Space

Kprobe struct

— Break inst

/} address

Break inst

Kprobe handler

here

Collect information

2. SSIL or SSOL problem(2/3)

e Problem definition :

— SSIL(single-stepping inline) or SSOL(single-stepping out of line)
— Kprobe uses SSOL not to miss a probepoint.
— For the instrumentation of user applications in kernel space, SSOL is

not acceptable.

» Application instructions should be executed in user space.

SSIL case

Break inst

SSOL case

\

I;address | Originalinst__|

v

Break inst

l

Original inst is executed
in original place.

addre§§

Break inst

—/t Move pc

-

T

Original inst is executed
in another place

2. SSIL or SSOL problem(3/3)

e QOur approach :
— Use SSIL for function-entry instrumentation

— In order to restore and execute an original inst., use the break-inst. in the
location of the 2nd instr..

— During this sequence, set “preemption disable” for preventing from preemption.

Break inst _\\l
Page fault

- modify 1% inst. 2" exception |
- Modify 15t inst. for next time.
- Restore 2 inst.

. - Enable preemption.
Break inst - go to 2" inst.

[ondist] e

Execute 2Md inst.

Function
entry

1t exception

-Go to kernel space.

- Disable preemption.

- Do instrumentation.

- Restore 15t inst. with orig.
- Modify 2" inst

- go to 1t inst.

3. Return handler (1/2)

Problem definition :

— From a slide no. 9, kretprobe use its trampoline in the same address space.
— In this mechanism, trampoline will execute in user-space.
— We want to instrument user-space events in kernel-space.

Application in User-space

har()

bar()

just a "nop" with a

kprobe on it

Same address space with application.
How can we move this trampoline
into kernel space.

Kretprobe mechanism

3. Return handler (2/2)

e Qur approach :

— Starting from the function entry point, when the 1t inst is invoked, return address is
changed with the 2nd instruction address.

— Replace the 2nd inst. w/ the break inst.

— During execution, the 2 inst. causes an exception to occur and retprobe_trampoline in
kernel space is executed.

— In the exception handler, go to the universal trampoline to instrument a function return-
value .

— This trampoline is common for both kernel and user function.

User function 1 User function 2

trampoline trampoline
return return

exception exception

Break
handler

return -
exception

Trampoline

—
— return

Linux kernel \ Instrumentation Module /

SWAP - Architecture Summary

« SWAP Tracing tool

— Control instrumentation modules to insert/remove probepoints.

e SWAP Trace Buffer

— Use a common buffer to save both kernel and user space traced events.

¢ SWAP Implementation Module

— Manage probepoints and their handlers based on kprobe infra-structures.

SWAP Tracing

Application To Be
Instrumented

instrumentation
info

BREAK
instructions

exceptions

Linux kernel
L

Tool

trace events

ﬁi Application " gyAp Trace | :

Buffer

\Ltrace events

SWAP
Instrumentation |
Module

signal

exceptions
/

\

send_signal

,,,,,,,,,,,,,,,,,,,,,

Application To Be
Instrumented

| app exit
page faults
ffffffffffff L —
do_page_fault do_exit
\ N catch
y catc app exit
catch page fault S
exceptlon‘%rr z
catch Instrumentation .
signal Module Linux
kernel

SWAP- Procedure summary(1/3)

Break inst
p ot
Address 1 robepoint list
Page-fault hander P
- Load page
Address 2

Page-fault Ret-handler

Address 1 Break inst w

exception Probe handler
Address 1 Break inst hander \ - Instrumentation
- change return addr.

- restore orig inst
- set break

Address 1 Original inst Execute orig inst

Break inst

Procedure summary(2/3)

Address 1 1st inst. Probe handler

: -Set break (1st, 3rd)
Break inst exception / - restore orig. (2nd)
hander

Address 1 Break inst
2nd inst Probe handler
, exception | _—>| - Set break (2n)
Siel Lt hander - restore orig. (3rd)
Address 1 Break inst
Break inst
3rd inst.

Function body is executed!!

Procedure summary(3/3)

Address 1 Break inst
Break inst

3rd inst.

Return inst.

Return to the original return address

exception
hander

Kret trampoline
- Instrumentation.

SWAP - Implementation Result

« In the SWAP tracing tool, check an application and its lib to be probed.
« Start tracing, start an application, and stop tracing.
« Show traced events.

Application & Library Instrumentation Trac

Function Process Arguments

Application Path: /fesE _start 716179192,

- 1 1 >
List of Libraries: :00.000864 _1ibc_esu_i 718096432,

001576 _init 718096432,
.002261 call_gmon_st 718096432,
002946 call_gmon_st

.003366 frame_dummy 718096432,
004046 frame_dummy

List of Functions: :00.004465 _ do_global_ 718096432,
.005145 __do_global_

005563 _init

.005974 libc_csu_i

:00.006512 nain 2147450564
Set Configuration from File:_ _ :00.008922 main
:00.009356 __libc_csu_f
:00.010041 _fini
m _ :00.010744 __do_global_
:00.011412 __do_global_
.011462 _fini
.011887 __libc_csu_f

SWAP - Instrumentation Overhead

CPU load overhead
original = 6,87%

libc instrumentation = 13,27%

application instrumentation =
22,23%

CPU load produced by MP3 codec

120,00%

100,00% -
80,00% -
60,00% - 7
40,00% -
20,00% -

0,00% -

| lm -

—e

10

20 30 40 50 60

seconds

—e— Original load —=— Instrumented load

70

80

» Page-fault overhead

Without instrumentation:

Maximum Page_Fault_Duration = 222 usec
Average Page_Fault_Duration = 64 usec

Libc instrumentation:
Maximum Page_Fault_Duration = 334280 usec
Average Page_Fault_Duration = 7740 usec

Application instrumentation:
Maximum Page_Fault_Duration = 8049 usec
Average Page_Fault_Duration = 199 usec

It depends on
the number of probepoints.

SWAP - Future work

« Reduce instrumentation overhead
— Reduce the number of break instructions.
— Optimize lookup overhead of probepoints

« Stripped binaries....

— Problem: Most CE products use stripped binaries to minimize
resources.
« Can not extract symbol information from a stripped binary.

— Solution: a cross instrumentation environment between target
and host
» Target : instrumentation only
* Host : select a probepoint , make its handler, and analyze traced events.

e similar to a cross-compile environment

Open Source Plan

* Now, cleaning source code and fixing bugs.
— Plan to open SWAP by 3Q 2009.
— Plan to post on the CELF website or Sourceforge.net.

e Your ideas/inputs/comments are welcomed!!!

	User Space Dynamic Instrumentation �based on kprobe
	Contents
	Classification of Analysis
	Why Dynamic Instrumentation?
	Current Dynamic Instrumentation Tools
	Kprobe infra-structures overview
	Kprobe
	Jprobe
	kretprobe
	Contents
	Introduction of SWAP�(System-wide Analyzer of Performance)
	Goals and 3 problems
	1. Demand-Paging(1/2)
	1. Demand-Paging(2/2)
	슬라이드 번호 15
	2. SSIL or SSOL problem(2/3)
	2. SSIL or SSOL problem(3/3)
	3. Return handler (1/2)
	3. Return handler (2/2)
	SWAP - Architecture Summary
	SWAP- Procedure summary(1/3)
	Procedure summary(2/3)
	Procedure summary(3/3)
	SWAP - Implementation Result
	SWAP - Instrumentation Overhead
	SWAP - Future work
	Open Source Plan

