
Unrestricted © Siemens AG 2014. All rights reserved

Real Safe Times
in the Jailhouse Hypervisor

Siemens Corporate Technology | October 2014

Page 2 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Real Safe Times in the Jailhouse Hypervisor

Agenda

Jailhouse introduction

Safe isolation

Architecture support

Jailhouse application development

Summary

[Demo]

Page 3 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

What is Jailhouse?

A tool to run

… real-time and/or safety tasks

… on multicore platforms (AMP)

… aside Linux

It provides

• strong & clean isolation

• bare-metal-like performance & latencies

• no reason to modify Linux

… and it's open source (GPLv2)

Page 4 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

What makes Jailhouse different?

• Use virtualization for isolation

• Prefer simplicity over features

• Resource access control
instead of resource virtualization

• 1:1 resource assignment
instead of scheduling

• Partition booted system
instead of booting Linux

• Do not hide existence of Jailhouse

• Offload work to Linux

• System boot

• Jailhouse and partition (“cell”) loading & starting

• Control and monitoring

Features Simplicity

 – ok, nothing new

Page 5 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Asymmetric Multi-Processing with Jailhouse

RTOS /
Bare-
Metal

Hardware

Linux

Core 4Core 3Core 1 Core 2

Jailhouse Hypervisor

Device A Device B Device C Device D

Stahlkocher,
CC BY-SA 3.0

Non-root
Cell

Root
Cell

Page 6 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Real Safe Times in the Jailhouse Hypervisor

Agenda

Jailhouse introduction

Safe isolation

Architecture support

Jailhouse application development

Summary

[Demo]

Page 7 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Isolation Properties of Jailhouse

• Prevents access to unassigned resources –
enforced for both CPUs and devices
• Memory

• I/O

• Interrupt channels

• Prevents cell interferences
• System reset / shutdown

• Inappropriate power settings [WiP]

• Hypervisor is protected against all cells

• Cell creation/destruction and hypervisor disabling
are privileged operations
• Can only be issued by root cell

• Non-root cells may lock system configuration

• Hypervisor supports non-root cells in validating system setup [WiP]

Page 8 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Limits of Hypervisor-based Isolation

• No magic to avoid hardware errors

• Sporadic hardware faults can bring down the system

• Or worse: produce wrong output!

• Jailhouse catches and forwards
hardware error reports [WiP]

• Reaction configurable, usually application-specific

• Don't forget potential hardware mistakes

• Hidden design errors

• Undocumented side effects

=> System design has to account for this!

Page 9 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

TÜV-approved Hypervisor Safety Concept

• Hypervisor safety concept completed

• Safety features

• Architecture

• Hardware requirements

• Software measures

• Safety-related application conditions

• TÜV Rheinland confirmed

• No deficiencies

• Concept feasible

Page 10 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Real Safe Times in the Jailhouse Hypervisor

Agenda

Jailhouse introduction

Safe isolation

Architecture support

Jailhouse application development

Summary

[Demo]

Page 11 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Jailhouse Status – x86

• Initial focus on Intel x86

• Requirements

• VT-x (~Sandy Bridge)

• VT-d (IOMMU with interrupt remapping)

• ≥ 2 cores

• Currently: 7300 lines of code

• Recent Linux kernel (3.1x)

• Supports direct interrupt delivery

 => Zero VM exits, minimal latencies feasible

• AMD64 ready for merge

• Supported by AMD, performed by Valentine Sinitsyn

• IOMMU on to-do list

Page 12 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Jailhouse Status – ARM

• ARMv7

• Initial port sponsored by ARM,
performed by Jean-Philippe Brucker

• (Almost) no changes to Jailhouse core

• Status

• Preparing for merge

• Works fine in Fast Model

• Rough support for ODROID-XU

• Arndale and TI Keystone II board support planned

• To-Do

• SMMU / System MMU

• Improve board support (device tree?)

• ARMv8

Page 13 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Real Safe Times in the Jailhouse Hypervisor

Agenda

Jailhouse introduction

Safe isolation

Architecture support

Jailhouse application development

Summary

[Demo]

Page 14 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Difference to Standard Hypervisors

Cell

Hardware

Linux

Core 4Core 3Core 2

Jailhouse Hypervisor

Device A Device B Device C Device DHardware
(e.g. x86 PC)

Hypervisor

Virtual Hardware
(PC-compatible)

Guest OS
(e.g. Linux)

Core 1

Device E

Page 15 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Available Resources for Cells

Resource x86

RAM
● Address space customizable

● No restrictions by BIOS, ROMs etc.

CPU cores
● Inter-processor communication
● Non-virtualized IDs
● Modified CPU bootstrap

● Inter-processor interrupts
● Different start vector & SMP boot,

no boot through BIOS

Clock
● At least one reference clock

● ACPI PM timer
● CPU-local TSC

Timer ● Local APIC timer

Data exchange with
assigned devices

● MMIO & PIO to device
● DMA to cell RAM

Interrupts from assigned devices ● Accesses to required IOAPIC slots

Inter-cell communication ● Virtual PCI device [WiP]

Page 16 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

OS-less Jailhouse Application

• For simple scenarios

• Single task

• Typically single-core

• Few devices

• New design or few dependencies

• Required infrastructure

• CPU bootstrap (assembly)

• I/O initialization and operation

• Devices

• Inter-cell [if needed]

=> Use Jailhouse “inmate” skeleton

• Enables “main loop” development in C

• Essential I/O library available for x86 and ARM

void main(void)
{
 init();
 while (1) {
 do_work();
 }
}

void main(void)
{
 init();
 while (1) {
 do_work();
 }
}

Page 17 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

RTOS-based Application

• For advanced scenarios

• Multiple tasks

• SMP

• Complex device setups

• Preexisting RTOS stacks

• Required steps

• Remove most platform setup logic

• Switch to available timers, clocks etc.
[if needed]

• Add inter-cell I/O support [if needed]

=> Reference: Jailhouse support for RTEMS

Page 18 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

RTEMS as Jailhouse “Inmate”

• Why RTEMS?

• Open source, actively developed

• Reasonable x86 & PCI support

• Required porting steps

• Removed BIOS dependencies,
adjusted CPU bootstrap

• Console only via serial

• Legacy PIC & PIT → x2APIC & IOAPIC

• Suitable clock & timer calibrations

• To be published soon (watch mailing list)

• Jailhouse “Board Support Package”

• Intel e1000-class PCI NIC driver

RTEMS

Page 19 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Emulation-based Application Debugging

• Option #1:
Hardware debugger

• Option #2:
Fast emulation, virtualization

• Challenge:
Emulate Jailhouse environment (not a “normal” PC)

• Approach:
Extend Linux/KVM hypervisor with Jailhouse awareness

• QEMU/KVM supports OS-level debugging via gdb

• We added x86 Jailhouse partition emulation

• Enables source-level debugging of Jailhouse applications

• Use (PCI) device pass-through for I/O access

• Warning: no real-time guarantees!

Page 20 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Real Safe Times in the Jailhouse Hypervisor

Agenda

Jailhouse introduction

Safe isolation

Architecture support

Jailhouse application development

Summary

[Demo]

Page 21 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Summary

• Jailhouse provides clean AMP for Linux

• Full CPU isolation

• Minimal latency I/O

• Reduced to the minimum (goal: <10k LOC/arch)

• Jailhouse aims at safe segregation

• Enable mixed-criticality on multicore

• TÜV-approved safety concept

• Jailhouse is a community project

• GPLv2, public development for 1 year

• Significant contributions enabled AMD64 and ARMv7

• You are invited to join!

Page 22 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Any Questions?

Thank you!

https://github.com/siemens/jailhouse

Jan Kiszka <jan.kiszka@siemens.com>

https://github.com/siemens/jailhouse

Page 23 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Real Safe Times in the Jailhouse Hypervisor

Agenda

Jailhouse introduction

Safe isolation

Architecture support

Jailhouse application development

Summary

Demo!

Page 24 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

QEMU/KVM

Live Demonstration

Running Jailhouse in a virtual machine?!

Core 0
Thread 1

Core 1
Thread 0

Devices UART

Jailhouse Hypervisor

PM
Timer

Timed
Event Loop

Linux

Core 1
Thread 1

Core 0
Thread 0

	1
	2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie_2

