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What is Jailhouse?

A tool to run

… real-time and/or safety tasks

… on multicore platforms (AMP)

… aside Linux

It provides

• strong & clean isolation

• bare-metal-like performance & latencies

• no reason to modify Linux

… and it's open source (GPLv2)
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What makes Jailhouse different?

• Use virtualization for isolation

• Prefer simplicity over features

• Resource access control
instead of resource virtualization

• 1:1 resource assignment
instead of scheduling

• Partition booted system
instead of booting Linux

• Do not hide existence of Jailhouse

• Offload work to Linux

• System boot

• Jailhouse and partition (“cell”) loading & starting

• Control and monitoring

Features Simplicity

 – ok, nothing new
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Asymmetric Multi-Processing with Jailhouse
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Isolation Properties of Jailhouse

• Prevents access to unassigned resources –
enforced for both CPUs and devices
• Memory

• I/O

• Interrupt channels

• Prevents cell interferences
• System reset / shutdown

• Inappropriate power settings [WiP]

• Hypervisor is protected against all cells

• Cell creation/destruction and hypervisor disabling
are privileged operations
• Can only be issued by root cell

• Non-root cells may lock system configuration

• Hypervisor supports non-root cells in validating system setup [WiP]
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Limits of Hypervisor-based Isolation

• No magic to avoid hardware errors

• Sporadic hardware faults can bring down the system

• Or worse: produce wrong output!

• Jailhouse catches and forwards
hardware error reports [WiP]

• Reaction configurable, usually application-specific

• Don't forget potential hardware mistakes

• Hidden design errors

• Undocumented side effects

=> System design has to account for this!
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TÜV-approved Hypervisor Safety Concept

• Hypervisor safety concept completed

• Safety features

• Architecture

• Hardware requirements

• Software measures

• Safety-related application conditions

• TÜV Rheinland confirmed

• No deficiencies

• Concept feasible
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Jailhouse Status – x86

• Initial focus on Intel x86

• Requirements

• VT-x (~Sandy Bridge)

• VT-d (IOMMU with interrupt remapping)

• ≥ 2 cores

• Currently: 7300 lines of code

• Recent Linux kernel (3.1x)

• Supports direct interrupt delivery

 => Zero VM exits, minimal latencies feasible

• AMD64 ready for merge

• Supported by AMD, performed by Valentine Sinitsyn

• IOMMU on to-do list
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Jailhouse Status – ARM

• ARMv7

• Initial port sponsored by ARM,
performed by Jean-Philippe Brucker

• (Almost) no changes to Jailhouse core

• Status

• Preparing for merge

• Works fine in Fast Model

• Rough support for ODROID-XU

• Arndale and TI Keystone II board support planned

• To-Do

• SMMU / System MMU

• Improve board support (device tree?)

• ARMv8
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Difference to Standard Hypervisors
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Available Resources for Cells

Resource x86

RAM
● Address space customizable

● No restrictions by BIOS, ROMs etc.

CPU cores
● Inter-processor communication
● Non-virtualized IDs
● Modified CPU bootstrap

● Inter-processor interrupts
● Different start vector & SMP boot, 

no boot through BIOS

Clock
● At least one reference clock

● ACPI PM timer
● CPU-local TSC

Timer ● Local APIC timer

Data exchange with
assigned devices

● MMIO & PIO to device
● DMA to cell RAM

Interrupts from assigned devices ● Accesses to required IOAPIC slots

Inter-cell communication ● Virtual PCI device [WiP]
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OS-less Jailhouse Application

• For simple scenarios

• Single task

• Typically single-core

• Few devices

• New design or few dependencies

• Required infrastructure

• CPU bootstrap (assembly)

• I/O initialization and operation

• Devices

• Inter-cell [if needed]

=> Use Jailhouse “inmate” skeleton

• Enables “main loop” development in C

• Essential I/O library available for x86 and ARM

void main(void)
{
    init();
    while (1) {
        do_work();
    }
}

void main(void)
{
    init();
    while (1) {
        do_work();
    }
}
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RTOS-based Application

• For advanced scenarios

• Multiple tasks

• SMP

• Complex device setups

• Preexisting RTOS stacks

• Required steps

• Remove most platform setup logic

• Switch to available timers, clocks etc.
[if needed]

• Add inter-cell I/O support [if needed]

=> Reference: Jailhouse support for RTEMS
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RTEMS as Jailhouse “Inmate”

• Why RTEMS?

• Open source, actively developed

• Reasonable x86 & PCI support

• Required porting steps

• Removed BIOS dependencies,
adjusted CPU bootstrap

• Console only via serial

• Legacy PIC & PIT → x2APIC & IOAPIC

• Suitable clock & timer calibrations

• To be published soon (watch mailing list)

• Jailhouse “Board Support Package”

• Intel e1000-class PCI NIC driver

RTEMS
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Emulation-based Application Debugging

• Option #1:
Hardware debugger

• Option #2:
Fast emulation, virtualization

• Challenge:
Emulate Jailhouse environment (not a “normal” PC)

• Approach:
Extend Linux/KVM hypervisor with Jailhouse awareness

• QEMU/KVM supports OS-level debugging via gdb

• We added x86 Jailhouse partition emulation

• Enables source-level debugging of Jailhouse applications

• Use (PCI) device pass-through for I/O access

• Warning: no real-time guarantees!
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Summary

• Jailhouse provides clean AMP for Linux

• Full CPU isolation

• Minimal latency I/O

• Reduced to the minimum (goal: <10k LOC/arch)

• Jailhouse aims at safe segregation

• Enable mixed-criticality on multicore

• TÜV-approved safety concept

• Jailhouse is a community project

• GPLv2, public development for 1 year

• Significant contributions enabled AMD64 and ARMv7

• You are invited to join!
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Any Questions?

Thank you!

https://github.com/siemens/jailhouse

Jan Kiszka <jan.kiszka@siemens.com>

https://github.com/siemens/jailhouse
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QEMU/KVM

Live Demonstration

Running Jailhouse in a virtual machine?!
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