
1

Using Agile development

practices for kernel development

A.K.A - Bringing sanity to chaos

Chase Maupin, system integration manager for the Linux Core

Product Development (LCPD) team

Agenda

• Agile Manifesto

• Meet LCPD - Charter and team

• What’s the problem?

• Mmhmm, you can fix it right?

• Let’s make sausage

• Would you do it again?

• Continuous improvement

2

3

Agile Manifesto

Agile Manifesto

• We are uncovering better ways of developing software by doing it and

helping others do it. Through this work we have come to value:

– Individuals and interactions over processes and tools

– Working software over comprehensive documentation

– Customer collaboration over contract negotiation

– Responding to change over following a plan

• That is, while there is value in the items on the right, we value the items

on the left more

• http://agilemanifesto.org/

4

http://agilemanifesto.org/

5

Meet LCPD

Where in the world is LCPD?

• LCPD is spread out across the world in six time zones

– West Coast US

– Central US

– East Coast US

– Germany

– Finland

– India

6

Baseport

Power & Thermal

Connectivity

Audio & Display

System Test

System Integration

LCPD Functional

Teams

What would you say…you do here?

• LCPD charter

– Creation of high quality, scalable Linux solutions for processors through

upstream development of uboot, the Linux kernel, tool chain and file system

– Insure maximum software reuse and device entitlement by working with

silicon design teams in providing feedback and requirements on new SoC

architectures

• Translation from manager to ‘techie’:

– Work with the upstream communities for our software components to

ensure that TI devices are supported in the mainline and work without

additional patches

– Ensure that we are addressing feedback from the community and

regressions in the mainline to ensure continued quality

– Work with our design teams to make sure simple design decisions don’t

have ripple effects through the software

7

8

What’s the problem?

It’s a big world after all

• As mentioned previously we have team members around the world in

six different time zones

• Furthermore within each functional area we have team members

spread around the world

• This makes co-ordination difficult among team members due to limited

overlapping work time

• IRC helps some but we

 needed more collaboration

9

Everyone wants a piece

• LCPD services multiple customers

each with:

– Their own set of care about devices

– Their own priorities and release schedules

– Their own set of end customers with

requirements and issues

• LCPD engineers care about the IP first, not the device

– Develop the feature or fix the issue for the IP on all devices

– This means that teams are not organized by device (i.e. a kernel team

per device) but instead by IP and functional areas

• This leads to the same developers being requested to develop

features for multiple customers and a need to have a single voice

prioritizing and directing these efforts

10

A balancing act

• The LCPD charter is to develop support for TI

devices upstream. This is how we ensure

sustainable, quality software development

• The community provides us feedback and

requirements as part of this which requires effort

from TI

• This effort has to be balanced along side the

requirements from our internal customers that

LCPD serves

• Furthermore as merge windows approach, the

priority of community tasks increases since

missing a merge window means carrying

patches out of tree for months

11

Square peg, meet round hole

• Many of our developers specialize in a particular

IP or kernel subsystem

• Experts require less ramp time which improves

efficiency

• This efficiency comes at the cost of cross

functionality

– We do not view developers as interchangeable cogs

– Rather we would like to encourage developers to

branch out into other interest areas

12

Sometimes the molehill IS a mountain

• Support for TI devices HAD NOT been pushed

upstream and instead consisted of thousands of

patches on old kernel revisions

• Moving these patches upstream while also

developing support for new devices and IP was

overwhelming

• We needed a way to keep track of the mountain but

only worry about one molehill at a time

– Currently our focus devices of AM335x, AM437x,

OMAP5, and DRA7xx all boot directly from the

mainline kernel with additional driver support being

added

13

14

Mmhmm, you can fix it right?

Scrum, it’s not as dirty as it sounds

• LCPD chose Scrum as the Agile process to help address our problems

• Having a shared backlog prioritized between customers allowed easier
communication of trade-offs and visibility into the team shopload

• Giving developers focused time (a sprint) to work on items helped ease the
chaos of fire fighting and priority churn
– Reduced the shell-shock as well. Looking back we had moved the mountain

one boulder at a time

• Making upstreaming part of the process kept focus on our charter 15

Make sure you have the right tool
• Needed an online tool which can be accessed both inside and outside of

our firewall
– This is particularly helpful for our remote/home based developers

• Needed a tool that allows all of LCPD to share a backlog while still
grouping development tasks for functional teams

• Needed a tool that does release planning, sprint tracking, etc all from one
tool

• Needed something that integrates with bug trackers like CQ to allow us to
track bugs in a unified backlog

• Wanted to give visibility to our customers of our backlog, priorities, and
progress
– This allows for them to pull information, rather than us having to push contant

updates when requested

• LCPD chose VersionOne (V1), an Agile SW development management
tool

• NOTE: There are many other good tools available to chose from, this was
just the one we picked

16

http://www.versionone.com/

17

Let’s make sausage

Sometimes I feel like you are a world away

• As mentioned in the LCPD introduction our team is scattered around the world

• Furthermore, the members of the different functional teams are scattered (limited co-
location)

• There is very little time overlap to allow for scrum meetings at a functional team level

• Scrum teams are organized first by time zone, then by functional area

• Backlog refinement meetings are held weekly at the functional team level
– The functional team reviews that domains backlog at that time

– People align on which team members plan to take which backlog item

18

It’s done when WE say it’s done

• LCPD shares a definition of when something is done, which reduces
confusion

• A development item is done when:

– The code has been written

– The code has been validated (system test or developer)

– Where appropriate the patches have been submitted upstream for review
• In this manner the upstreaming of work is part of our development flow

• A defect item is done when:

– The code has been written

– The code has been merged into the production tree

– Where appropriate the patches have been submitted upstream for review

– System test has validated the fix in the production tree

• The main difference is that system test operates against the production
tree. Defects found there are checked for applicability to the latest
mainline and if so fixed for mainline and then backported to production tree

19

I want it NOW

• Support escalations can happen at any time

• Customers generally don’t care if you are in the middle of a sprint

• How do you plan a sprint for two weeks and still be responsive to
customers?
– Many scrum practitioners face this same problem so no need to invent anything

new

• Allocate overhead in each sprint for the typical customer support load
– Usually about 25%

– This time lets customers see progress being made

– For simple issues this is likely enough

– For complex issues this is enough to replicate the problem and plan more time in
the next sprint

• The Kernel Community is treated as a critical “customer”. This gives us
time to respond to feedback

• If no customer support comes in we can opportunistically work on
something else from the backlog, assist other team members, or do code
clean-up, etc

20

How long will it take to upstream this?

• Upstreaming is a process that takes time.

• It is not a process that can always be predicted

• So how do you handle upstreaming in Scrum with
fixed time boxes and an indeterminite process?

• Back to LCPD definition of Done we consider an
item “done” when we have submitted it upstream for
review

– Small feedback goes into the “customer support”
overhead bucket

– Significant feedback gets a new story allocated to
address the feedback and a new submission. This is
given critical priority

• This cycle iterates until the work is upstream

• If we expect feedback on a series we plan for it in
the next sprint. i.e. an RFC will likely have feedback
that needs to be addressed

21

It’s bigger than just you

• As active community developers

some LCPD team members also have

maintainership responsibilities in the

broader community

• In our Scrum implementation we

handle this by creating recurring

stories representing the

maintainership time and tasks

• The maintainers pull these stories into

every sprint, ensuring that they have

enough time reserved to take care of

not just TI, but their community

responsibilities as well

22

What’s your plan?

• Agile development doesn’t mean no planning

• The product owners plan the major deliverables

as epics and let the teams break them down

– This is what management uses for customer

commitments and tracking

• What we don’t do is plan every minute detail,

as that is likely wrong

– Instead we plan the broad goals and when we

think we can accomplish them and let the details

evolve over time

• There is a difference between when code is

available and when code is upstream. You can

plan for available

23

24

Given what you know now, would
you do it again?

Heck yeah!!!

• LCPD has been able to make significant progress pushing support for

our devices upstream

• We productized and released our SDK based on the then latest stable

kernel, boot loader, and Yocto releases with an eye towards LTS

• We have been able to balance customer support escalations and still

provide proper developer focus for upstreaming

• The team feedback is that Scrum has provided the desired focus and

minimized distractions

25

26

Continuous improvement

27

If you develop it, they will come.. for
support

• Customer support needs to be planned for

– Whether internal support or community

• You can’t just wait until the next sprint to

address issues

– Been there, tried that, no one was happy

• Instead, leave enough time for the basics

and plan the bigger items

– It usually takes a while just to replicate the

issue and realize the issue is big enough to

need more dedicated time

Time drags when you’re planning dumb
• With scrum teams full of specialists we often found that planning part two was

tedious
– This is where stories are broken down into tasks

• What we did find useful was:
– Reviewing the steps required to complete a story. This allowed others to learn about

the pieces of a story and the approach to solving the problem

– The estimate of time required to complete the story. This gave us a way as a team to
sanity check the commitment

– Areas where people could help each other, such as reviewing documentation or
performing testing

– Allowing people to bring their own experiences into the story such as planning missing
tasks based on similar experiences

28

• However, doing this breakdown online if
front of everyone was painful

• So instead we decided to introduce a
break between planning part one and
planning part two to allow people to do an
initial breakdown, then review with the
team

• Planning went much faster and we found
more attention was paid to what was being
done and more team interaction

Nobody is perfect….

• ….And neither is your scrum
implementation, backlog, etc

• Waiting for perfection or until you have
defined every last part of your agile
process is the antithesis of agile

– That’s not to say you shouldn’t have you
basic framework in place

• Just remember to be willing to adapt,
learn and get moving. The rest will
come over time as you find what works
for you

– Just keep an eye on the benefits of each
step and find how you can get that benefit
in the way least painful for you

• The only real requirement is
participation

29

What would you change?

• We do not have enough cross-training. Back to having too many

experts

– Grouping by functional area helps but I would like more cross-training

• PO roles should be more official and dedicated

– Should have one per team and not split among teams

• Have test team resources around the world to be able to embed testers

in each scrum team

– Current test team is US based

30

31

Q&A

