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About Jon Masters

● Been playing with Linux for 14 years (and the 
kernel for 13 of those), since the age of 13.

● Built embedded NMR scientific instruments, 
worked with Montavista UK, now at Red Hat.

● Author of the LKML Summary Podcast and the 
kernel column in Linux User & Developer.

● Co-author of Building Embedded Linux 
Systems (second edition) – O'Reilly (2008)

● My car still has an empeg :)



  

Porting Linux
Overview

● Why port Linux anyway?
● Background pre-requisities
● Early board work
● Bootloader bringup
● Initial kernel bringup
● Debugging
● Working with Upstream
● Trends



  

Porting Linux
Why port Linux anyway?

● Linux is very portable
● Supports 23 architectures in the upstream 

“mainline” kernel tree of Linus Torvalds.
● Kernel is mostly written in C, with some assembly 

(most architectures only need a dozen such files)
● Split between high-level generic functions and low-

level functions to abstract architectural differences.



  

Porting Linux
Why port Linux anyway?

● Linux is competitive
● The number of Linux kernel developers contributing 

to the official kernel has tripled since 2005.
● Feature growth continues with an average of 10K 

new lines of source code added every day.
● In the hour you spend here 5.45 patches will on 

average be added to the upstream Linux kernel.

● Source: Linux Foundation analysis



  

Porting Linux
Why port Linux anyway?

● Linux is cost effective.
● A large amount of code to build upon.
● Large (growing) community of developers.
● I think we all know the rest.



  

Porting Linux
Background pre-requisities

● Hardware
● Development board or simulator

– Optional debugger, some kind of UART
– Boards range in value from $200-$crazy
– Implement the same architecture and platform as the 

final design but maybe with a number of hacks.
– Simulator can be cheap and flexible (e.g. 

Android/OpenMoko/OLPC using QEMU).
– See Pierre's talk on QEMU for more.



  

Porting Linux
Background pre-requisities

● Software
● Toolchain (GCC, binutils, etc.)

– PTXdist/crosstool/project specific
– See Robert Schwebel's PTXdist talk.

● Some kind of IDE
– Likely to be Eclipse based, e.g. all the vendors.

● You can get all of this from a vendor.



  

Porting Linux
Background pre-requisities

● Experience
● Kernel development experience

– Maybe not arch level, but at least driver work. Need to 
understand and study architectural issues.

● Hardware reference documentation
– Don't forget to check the errata (first!)

● Books and resources
– Some links later, also forums such as CELF.

● Sign up to the Linux Kernel Mailing List
– At least keep an eye on discussion. Don't miss topics like 

the ongoing generic-asm work by Arnd Bergmann.



  

Porting Linux
Early board work

● Test the board actually works
● Write a simple LED flasher, print messages to the 

UART, have an idea that it does something.
● If examples have been supplied by a board vendor, 

run them to make sure the board isn't defective.

● Test the debugger actually works
● I've had hardware debuggers that would lose 

breakpoints, and other weirdness.



  

Porting Linux
Bootloader bringup

● Many Open Source friendly projects use U-Boot
● Das U-Boot written by Wolfgang Denk, and 

maintained by many “custodians”.
● http://www.denx.de/wiki/U-Boot
● Supports ARM, AVR32, Blackfin, Microblaze, MIPS, 

NIOS, PowerPC, SH, and more.
● Typically stored in on-board NOR or NAND.

– Relocates itself into RAM, loads a kernel (and root 
filesystem in an initramfs).

http://www.denx.de/wiki/U-Boot


  

Porting Linux
Bootloader bringup

● U-Boot Design Principles
● “Keep it small”

– A build of U-Boot with network support (if applicable) 
should fit in 256KiB.

● “Keep it simple”
– U-Boot should only do what is necessary to boot

● “Keep it fast”
– Get things running and then get out of the way.

● “Keep it portable”
– U-Boot is (like Linux) mostly written in C, with some 

assembly for unavoidable reset/CPU init/RAM setup/C 
stack environment setup.



  

Porting Linux
Bootloader bringup

● U-Boot is highly configurable
● Many if (CONFIG_) conditionals

● Implementation split between “board” and “cpu”
● Platform stuff under “board”, arch under “cpu”



  

Porting Linux
Bootloader bringup

● U-Boot “board” support
● Linker script defining U-Boot image
● boardname.c file with basic functions
● (optional) assembly helper code if needed
● Various functions the CPU code will call into

– lowlevel_init
– board_pre_init, board_init
– checkboard
– initdram
– Testdram
– get_sys_info, get_PCI_freq



  

Porting Linux
Bootloader bringup

● U-Boot “board” support
● Board provided functions may be empty
● The possible functions vary by supported 

architecture, documented in the source
● Flash functions that end in _f

– Callable before relocation into RAM is complete.
● Relocated functions that end in _r

– Callable only once relocation into RAM is complete.



  

Porting Linux
Bootloader bringup

● Implementing a new U-Boot “board” port
● Use a similar board as a reference guide.
● Start by bringing up the U-Boot prompt
● Add some testing functions to exercise specific 

board features (another common use)
● Later add drivers for additional devices

– Ethernet, disk, flash parts, etc.
● Become a custodian of your port

– Custodians maintain their piece of U-Boot (usually in their 
own “git” tree) on the Denx git server.



  

Porting Linux
Bootloader bringup

● U-Boot “cpu” support
● Much less common that you would need to port to 

an entirely new architecture
● Typical system entry is in start.S

– e.g. start440 for a PowerPC 440 system.
– Initialize CPU cacheing asap (e.g. iccci/dccci)
– Initialize CPU mode/context (e.g. SPRs)
– Initialize MMU (e.g. no virtual/clear TLBs)
– Provide interrupt and exception vectors
– Setup minimal C stack environment
– Finally end up in cpu_init/board_init



  

Porting Linux
Bootloader bringup

● Passing System Information
● Historically, embedded Linux didn't have a direct 

equivalent of EFI/ACPI/Open Firmware.
● Kernels were heavily bound to the specific board in 

question
– recompile needed to set options

● Kernel command line option passing was added
● bdinfo structure on PowerPC
● Recent work focuses on Flattened Device Tree.
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Bootloader bringup

● Flattened Device Tree
● Expresses system information in the form of an 

Open Firmware style device tree
– Location of system resources in physical memory map
– Model and serial number
– Installed and optional devices

● Stored in a binary BLOB and passed to the kernel
– Special utilities to convert text file OF-style trees

● Linux can decode the fdt to figure out board info



  

Porting Linux
Initial kernel bringup

● Kernel Overview
● Linux supports 32 and 64-bit systems of Little 

and/or Big Endian in nature.
● Macros, wrappers, function pointers and common 

function names abstract away such differences.
● The kernel is split into arch and platform code.
● All stored under the “arch/” directory.

– Each arch has flexibility into handling its own platforms



  

Porting Linux
Initial kernel bringup

● Kernel Overview
● The “core kernel” includes the low-level arch 

support and high level functions
– e.g. those in the top-level “kernel/” and “mm/” directories.

● Other stuff (filesystems, networking, drivers) are not 
considered to be “core kernel”.

● Source code overview
– Use a tool such as LXR (lxr.linux.no) to browse.
– Use a tool such as cscope (invoke it with cscope -kR) to 

search specific symbols.



  

Porting Linux
Initial kernel bringup

● Architectures
● Live in “arch/”

– Formerly also include/asm-archname
● New architectures are rare

– But several added this year alone (microblaze, S+Core).
– Total in the official kernel is 23 today.

● Typical mistake is to copy an existing architecture
– Especially something wildly inappropriate, such as x86 

for an ARM-like new architecture, complete with all of its 
(deprecated) system calls.



  

Porting Linux
Initial kernel bringup

● Architectures
● The kernel tree has been known to have too much 

duplication (e.g. i386 vs. x86_64)
– But it's being worked on, e.g. x86 unification.

● Arnd Bergmann introduced generic-asm
– A generic “ABI” that provides all of the core header 

functions needed by the higher level kernel code.
– e.g. <asm-generic/atomic.h> provides atomicity functions 

such as atomic_add, including a generic version.
– Also implementations of low-level mmu.h, mutex.h, pci.h, 

page.h and 121 other header files right now.



  

Porting Linux
Initial kernel bringup

● Architectures
● Asm-generic used by several architectures already.

– Especially the new S+Core architecture
– Microblaze is the process of migrating

● S+Core
– Liqin Chen appeared on LKML several months ago with 

patches for a new (ARM-like) arch from Sunplus.
– The architecture is a low power 32-bit RISC SoC, with a 

32/16-bit hybrid instruction mode (Thumbish), optional 
MMU, optional DSP-like functions, user defined co-
processors, 63 prioritized interrupts, SJTAG, etc.

– Targeting: Home and Entertainment
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Initial kernel bringup

● Architectures
● Arnd Bergmann reviewed the initial S+Core port
● Sent many suggestions that Liqin dutifully followed.

– Both gained from the experience.
– Now a good reference architecture in S+Core

● Only proposed a few months ago and already 
upstream due to good community interaction.
– A success story and a role model.



  

Porting Linux
Initial kernel bringup

● Architectures
● The S+Core tree:

– boot/ - Target location for vmlinux.bin
– configs/ - A defconfig example
– Include/ - The “asm” directory. Many of the 89 files in 

here simply include their <asm-generic> counterpart. 
Some e.g. cache/VM bits, register specifics (threadinfo), 
etc. following the standard asm-generic ABI.

– Kconfig - Standard kernel configuration data. There is 
also a debug verion of this file called Kconfig.debug.



  

Porting Linux
Initial kernel bringup

● Architectures
● The S+Core tree:

– kernel/ - The “head.S” low-level assembly entry point, 
irq.c interrupt bits, module.c ELF module loader bits, 
process.c bits specific to clone(), setup.c low-level bits for 
bootmem, sys_call_table, sys_core, and time.c.

– lib/ - Various low-level implemenations of things 
like strlen written in fast assembly.

– Makefile
– mm/ - pgtable.c, init.c (paging_init and mem_init), 

tlb-miss.c, tlb-score.c, etc.



  

Porting Linux
Initial kernel bringup

● Porting to a new architecture
● Get to know the kernel tree first.

– LXR, cscope, and others are your friends.
● Pick an existing similar (endianness, bit size, 

behavior, etc.) arch and look at its implementation.
● Don't copy an existing architecture.
● Create your new one and pull in the asm-generic 

bits. Look to S+Core (“score”) and eventually to 
Microblaze for good example code.

● See also: Nina Wilner's PowerPC presentation
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Initial kernel bringup

● Typical init process
● Read through the code beginning with the head.S 

entry for your favorite reference architecture.
● head.S

– Conventional name for lowest level entry (usually at 
“start”, “_start”, “start_here”, or similar)

– Entered directly after U-Boot exec.
– Responsible for early configuring the CPU

● Cacheing, initial stack sufficient for C code, enbale (SW/HW) 
MMU, jump to core kernel start_kernel

– And providing exception vectors
● Errors, Faults (page faults), etc.



  

Porting Linux
Initial kernel bringup

● Typical init process
● start_kernel

– Sequentially initialize the kernel.
– Initialize lockdep/stack canary
– boot_cpu_init. Activate the first processor using hotplug.
– setup_arch. Architectural specifics. For example:

● Low-level CPU and platform init
● Paging (VM) enabled
● Data passed in from the bootloader (device tree)
● On S+Core: cpu_cache_init, tlb_init, bootmem_init, paging_init, 

and resource_init.
● On PowerPC: enabling xmon debugger and debug output.



  

Porting Linux
Initial kernel bringup

● Typical init process
● start_kernel

– setup_command_line. Use the bootmem allocator to 
stash away the kernel command line.

– sort_main_extable. Sort the kernel symbol table for later 
use by the module loader (recent speedup work here by 
Alan Jenkins and also Carmelo's LKM fast loader later).

– mm_init. Calls arch-specific mem_init, sets up various 
kernel caches and enables vmalloc.

– sched_init. Does the heavy lifting to prep the scheduler 
(allocating using bootmem the runqueus and CFS bits).
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Initial kernel bringup

● Typical init process
● start_kernel

– early_irq_init. Allocate the IRQ structs.
– init_IRQ. Architectural counterpart to early_irq_init, 

providing platform specific stuff.
– timekeeping_init. Generic function that determines which 

clocksources to use and configures them.
– time_init. Corresponding architectural specifics.
– console_init. Enables the console to that we can begin to 

output the various kernel boot messages.
– kmemleak_init. Initialize Catalin's nifty leak detector.



  

Porting Linux
Initial kernel bringup

● Typical init process
● start_kernel

– calibrate_delay. Determine the “bogomips”.
– fork_init. Prepare to be able to fork (clone) new tasks. 

Calls down into the arch code to complete this.
● rest_init

– Prepare the scheduler (including RCU)
– Start the master kernel thread (kthreadd)
– Setup the idle task and schedule into init
– After that heading toward userspace



  

Porting Linux
Initial kernel bringup

● Platforms
● As with U-Boot, platforms build upon architectures.

– PowerPC implements a clean “platforms” directory.
– ARM mixes things around under the CPU type.
– Others (such as x86) don't really handle many different 

(non-PC) platforms all that well (yet).
– Some platforms use structs of function pointers

● PowerPC uses a define_machine macro, including a probe 
function that can selectively utilize the device tree.

● ARM uses a MACHINE_STARTS macro, but is not yet as 
flexible. For example, board-n8x0.c registers n8x0_init_machine 
to be called for the Nokia N8xx tablet initialization.



  

Porting Linux
Initial kernel bringup

● Platforms
● Platform devices

– Many platforms are built using standard parts such as 
PCI (or PCI like) devices that can be registers and 
managed generically.

– Some “devices” are connected to legacy buses or aren't 
really on a traditional bus at all

● As is the case for many mapped SoC devices.

– The Linux driver model documentation (in the 
“Documentation/” kernel directory) will show you how to 
register and manage platform devices

● Needed for power management.



  

Porting Linux
Initial kernel bringup

● Porting to a new platform
● This is far easier than porting to a new arch, since 

it's just a variant.
● Typically, you can base your platform port on an 

existing platform for the arch in question and more 
legitimately copy/paste where not generalizable.

● Make sure you educate the kernel about system 
geometry (RAM size, etc.) and location of PCI.

● Use the platform abstraction for any generic 
mapped devices not managed elsewhere.
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Device Drivers

● Basic architecture and platform support have 
little meaning without drivers for peripherals.

● Fortunately, Linux already supports a large 
(growing) number of existing devices that may 
already cover the majority of your design.

● Refer to Linux Device Drivers (3rd edition) for 
more information about writing drivers.



  

Porting Linux
Debugging

● Many debugging and diagnostic options.
● gdb. Can be used to attach to a remote hardware 

(or virtual machine) gdbstub and issue instructions.
● ftrace.  An in-kernel function tracing framework, 

originally used to measure kernel latencies.
● kexec/crash/kdump. Can be used to boot an aux. 

kernel if the main one crashes, to capture state. A 
recent enhancement allows “flight recorder” mode.

● Ksplice. Dynamically patch your running kernel.
● Performance Events (“perf”). Capture system 

performance metrics (and almost anything else).



  

Porting Linux
Working with upstream

● Why you need upstream
● Less “bitrot” due to constantly evolving upstream 

kernel. Reduces “rebasing vs. retaining” tradeoff.
● More influence on future development. People will 

care about your project if it has code upstream.
● 70% of total contributions to the kernel come from 

developers working at corporations that consider 
such participation a competitive edge.

● Source: Linux Foundation analysis.



  

Porting Linux
Working with upstream

● Development Trees
● The official kernel lives in Linus Torvald's “git” tree 

on git.kernel.org
● There are countless other “git” trees available.

– linux-next is a stepping stone
● Stephen Rothwell posts a new tree each day
● Made from 140 “git” trees that are merged

– staging is for immature code
● Lives in a special kernel directory (harder for arches)
● Greg Kroah-Hartman periodically updates it

● Please read Documentation/development-process



  

Porting Linux
Working with upstream

● Where do I go from here?
● Check the MAINTAINERS file to see who owns the 

architecture or other kernel subsystem concerned.
– Reach out to the community for advice if unsure.

● Learn to use “git”, “quilt”, and the git email features.
● Consider the “staging” tree for immature code.
● Prepare your work for linux-next.

– Track Stephen Rothwell's tree regularly and post a “git” 
tree of your patches.

– Code that passes review and is in linux-next has a very 
good chance of being merged upstream in the next 
“merge window” by the relevant maintainer.



  

Porting Linux
Working with upstream

● Mailing Lists
● http://vger.kernel.org
● LKML – Linux Kernel Mailing List
● Linux-next Mailing List
● Architectural Maintainer Lists
● Greg Kroah-Hartman's Driver Development List
● etc.

http://vger.kernel.org/
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Trends

● Boot time
● Work is going on in boot time reduction. See the 

talk today and upstream “bootchart”/“timechart”.

● Dynamic Power Management
● Rafael J. Wysocki implemented dynamic suspend 

of individual buses in a recent rework.

● Flattened Device Tree
● Continued work is happening here. Thanks to Grant 

Likely and others for their efforts.



  

Porting Linux
Links

● LWN - http://www.lwn.net/
● LKML - http://vger.kernel.org/
● Understanding the Linux Kernel
● Linux Kernel Development
● Linux Device Drivers (LDD3)
● Building Embedded Linux Systems
● Linux Kernel in a nutshell

http://vger.kernel.org/


  

Porting Linux
Disclaimer

● I do not speak for my employer.

● Web: http://www.jonmasters.org/
● Email: jcm@jonmasters.org

mailto:jcm@jonmasters.org


  

Questions?



  

Porting Linux
Trends

● Devtmpfs
● Devfs v2.0? Not quite.

● IO Bandwidth Limiting
● Several proposals (dm-ioband, IO scheduler) but 

nothing agreed on just yet.

● Swap
● Compcache. Compressed RAM alternative to swap.



  

Porting Linux
Trends

● Virtualization
● Various work to implement low-overhead (even low-

latency “Real Time”) enhancements in KVM.
● KSM. Kernel Shared Memory allows dynamic 

sharing of identical pages and is just one cool 
technology recently pulled into KVM.
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