

Porting Linux
Embedded Linux Conference (Europe)

Porting Linux
About Jon Masters

● Been playing with Linux for 14 years (and the
kernel for 13 of those), since the age of 13.

● Built embedded NMR scientific instruments,
worked with Montavista UK, now at Red Hat.

● Author of the LKML Summary Podcast and the
kernel column in Linux User & Developer.

● Co-author of Building Embedded Linux
Systems (second edition) – O'Reilly (2008)

● My car still has an empeg :)

Porting Linux
Overview

● Why port Linux anyway?
● Background pre-requisities
● Early board work
● Bootloader bringup
● Initial kernel bringup
● Debugging
● Working with Upstream
● Trends

Porting Linux
Why port Linux anyway?

● Linux is very portable
● Supports 23 architectures in the upstream

“mainline” kernel tree of Linus Torvalds.
● Kernel is mostly written in C, with some assembly

(most architectures only need a dozen such files)
● Split between high-level generic functions and low-

level functions to abstract architectural differences.

Porting Linux
Why port Linux anyway?

● Linux is competitive
● The number of Linux kernel developers contributing

to the official kernel has tripled since 2005.
● Feature growth continues with an average of 10K

new lines of source code added every day.
● In the hour you spend here 5.45 patches will on

average be added to the upstream Linux kernel.

● Source: Linux Foundation analysis

Porting Linux
Why port Linux anyway?

● Linux is cost effective.
● A large amount of code to build upon.
● Large (growing) community of developers.
● I think we all know the rest.

Porting Linux
Background pre-requisities

● Hardware
● Development board or simulator

– Optional debugger, some kind of UART
– Boards range in value from $200-$crazy
– Implement the same architecture and platform as the

final design but maybe with a number of hacks.
– Simulator can be cheap and flexible (e.g.

Android/OpenMoko/OLPC using QEMU).
– See Pierre's talk on QEMU for more.

Porting Linux
Background pre-requisities

● Software
● Toolchain (GCC, binutils, etc.)

– PTXdist/crosstool/project specific
– See Robert Schwebel's PTXdist talk.

● Some kind of IDE
– Likely to be Eclipse based, e.g. all the vendors.

● You can get all of this from a vendor.

Porting Linux
Background pre-requisities

● Experience
● Kernel development experience

– Maybe not arch level, but at least driver work. Need to
understand and study architectural issues.

● Hardware reference documentation
– Don't forget to check the errata (first!)

● Books and resources
– Some links later, also forums such as CELF.

● Sign up to the Linux Kernel Mailing List
– At least keep an eye on discussion. Don't miss topics like

the ongoing generic-asm work by Arnd Bergmann.

Porting Linux
Early board work

● Test the board actually works
● Write a simple LED flasher, print messages to the

UART, have an idea that it does something.
● If examples have been supplied by a board vendor,

run them to make sure the board isn't defective.

● Test the debugger actually works
● I've had hardware debuggers that would lose

breakpoints, and other weirdness.

Porting Linux
Bootloader bringup

● Many Open Source friendly projects use U-Boot
● Das U-Boot written by Wolfgang Denk, and

maintained by many “custodians”.
● http://www.denx.de/wiki/U-Boot
● Supports ARM, AVR32, Blackfin, Microblaze, MIPS,

NIOS, PowerPC, SH, and more.
● Typically stored in on-board NOR or NAND.

– Relocates itself into RAM, loads a kernel (and root
filesystem in an initramfs).

http://www.denx.de/wiki/U-Boot

Porting Linux
Bootloader bringup

● U-Boot Design Principles
● “Keep it small”

– A build of U-Boot with network support (if applicable)
should fit in 256KiB.

● “Keep it simple”
– U-Boot should only do what is necessary to boot

● “Keep it fast”
– Get things running and then get out of the way.

● “Keep it portable”
– U-Boot is (like Linux) mostly written in C, with some

assembly for unavoidable reset/CPU init/RAM setup/C
stack environment setup.

Porting Linux
Bootloader bringup

● U-Boot is highly configurable
● Many if (CONFIG_) conditionals

● Implementation split between “board” and “cpu”
● Platform stuff under “board”, arch under “cpu”

Porting Linux
Bootloader bringup

● U-Boot “board” support
● Linker script defining U-Boot image
● boardname.c file with basic functions
● (optional) assembly helper code if needed
● Various functions the CPU code will call into

– lowlevel_init
– board_pre_init, board_init
– checkboard
– initdram
– Testdram
– get_sys_info, get_PCI_freq

Porting Linux
Bootloader bringup

● U-Boot “board” support
● Board provided functions may be empty
● The possible functions vary by supported

architecture, documented in the source
● Flash functions that end in _f

– Callable before relocation into RAM is complete.
● Relocated functions that end in _r

– Callable only once relocation into RAM is complete.

Porting Linux
Bootloader bringup

● Implementing a new U-Boot “board” port
● Use a similar board as a reference guide.
● Start by bringing up the U-Boot prompt
● Add some testing functions to exercise specific

board features (another common use)
● Later add drivers for additional devices

– Ethernet, disk, flash parts, etc.
● Become a custodian of your port

– Custodians maintain their piece of U-Boot (usually in their
own “git” tree) on the Denx git server.

Porting Linux
Bootloader bringup

● U-Boot “cpu” support
● Much less common that you would need to port to

an entirely new architecture
● Typical system entry is in start.S

– e.g. start440 for a PowerPC 440 system.
– Initialize CPU cacheing asap (e.g. iccci/dccci)
– Initialize CPU mode/context (e.g. SPRs)
– Initialize MMU (e.g. no virtual/clear TLBs)
– Provide interrupt and exception vectors
– Setup minimal C stack environment
– Finally end up in cpu_init/board_init

Porting Linux
Bootloader bringup

● Passing System Information
● Historically, embedded Linux didn't have a direct

equivalent of EFI/ACPI/Open Firmware.
● Kernels were heavily bound to the specific board in

question
– recompile needed to set options

● Kernel command line option passing was added
● bdinfo structure on PowerPC
● Recent work focuses on Flattened Device Tree.

Porting Linux
Bootloader bringup

● Flattened Device Tree
● Expresses system information in the form of an

Open Firmware style device tree
– Location of system resources in physical memory map
– Model and serial number
– Installed and optional devices

● Stored in a binary BLOB and passed to the kernel
– Special utilities to convert text file OF-style trees

● Linux can decode the fdt to figure out board info

Porting Linux
Initial kernel bringup

● Kernel Overview
● Linux supports 32 and 64-bit systems of Little

and/or Big Endian in nature.
● Macros, wrappers, function pointers and common

function names abstract away such differences.
● The kernel is split into arch and platform code.
● All stored under the “arch/” directory.

– Each arch has flexibility into handling its own platforms

Porting Linux
Initial kernel bringup

● Kernel Overview
● The “core kernel” includes the low-level arch

support and high level functions
– e.g. those in the top-level “kernel/” and “mm/” directories.

● Other stuff (filesystems, networking, drivers) are not
considered to be “core kernel”.

● Source code overview
– Use a tool such as LXR (lxr.linux.no) to browse.
– Use a tool such as cscope (invoke it with cscope -kR) to

search specific symbols.

Porting Linux
Initial kernel bringup

● Architectures
● Live in “arch/”

– Formerly also include/asm-archname
● New architectures are rare

– But several added this year alone (microblaze, S+Core).
– Total in the official kernel is 23 today.

● Typical mistake is to copy an existing architecture
– Especially something wildly inappropriate, such as x86

for an ARM-like new architecture, complete with all of its
(deprecated) system calls.

Porting Linux
Initial kernel bringup

● Architectures
● The kernel tree has been known to have too much

duplication (e.g. i386 vs. x86_64)
– But it's being worked on, e.g. x86 unification.

● Arnd Bergmann introduced generic-asm
– A generic “ABI” that provides all of the core header

functions needed by the higher level kernel code.
– e.g. <asm-generic/atomic.h> provides atomicity functions

such as atomic_add, including a generic version.
– Also implementations of low-level mmu.h, mutex.h, pci.h,

page.h and 121 other header files right now.

Porting Linux
Initial kernel bringup

● Architectures
● Asm-generic used by several architectures already.

– Especially the new S+Core architecture
– Microblaze is the process of migrating

● S+Core
– Liqin Chen appeared on LKML several months ago with

patches for a new (ARM-like) arch from Sunplus.
– The architecture is a low power 32-bit RISC SoC, with a

32/16-bit hybrid instruction mode (Thumbish), optional
MMU, optional DSP-like functions, user defined co-
processors, 63 prioritized interrupts, SJTAG, etc.

– Targeting: Home and Entertainment

Porting Linux
Initial kernel bringup

● Architectures
● Arnd Bergmann reviewed the initial S+Core port
● Sent many suggestions that Liqin dutifully followed.

– Both gained from the experience.
– Now a good reference architecture in S+Core

● Only proposed a few months ago and already
upstream due to good community interaction.
– A success story and a role model.

Porting Linux
Initial kernel bringup

● Architectures
● The S+Core tree:

– boot/ - Target location for vmlinux.bin
– configs/ - A defconfig example
– Include/ - The “asm” directory. Many of the 89 files in

here simply include their <asm-generic> counterpart.
Some e.g. cache/VM bits, register specifics (threadinfo),
etc. following the standard asm-generic ABI.

– Kconfig - Standard kernel configuration data. There is
also a debug verion of this file called Kconfig.debug.

Porting Linux
Initial kernel bringup

● Architectures
● The S+Core tree:

– kernel/ - The “head.S” low-level assembly entry point,
irq.c interrupt bits, module.c ELF module loader bits,
process.c bits specific to clone(), setup.c low-level bits for
bootmem, sys_call_table, sys_core, and time.c.

– lib/ - Various low-level implemenations of things
like strlen written in fast assembly.

– Makefile
– mm/ - pgtable.c, init.c (paging_init and mem_init),

tlb-miss.c, tlb-score.c, etc.

Porting Linux
Initial kernel bringup

● Porting to a new architecture
● Get to know the kernel tree first.

– LXR, cscope, and others are your friends.
● Pick an existing similar (endianness, bit size,

behavior, etc.) arch and look at its implementation.
● Don't copy an existing architecture.
● Create your new one and pull in the asm-generic

bits. Look to S+Core (“score”) and eventually to
Microblaze for good example code.

● See also: Nina Wilner's PowerPC presentation

Porting Linux
Initial kernel bringup

● Typical init process
● Read through the code beginning with the head.S

entry for your favorite reference architecture.
● head.S

– Conventional name for lowest level entry (usually at
“start”, “_start”, “start_here”, or similar)

– Entered directly after U-Boot exec.
– Responsible for early configuring the CPU

● Cacheing, initial stack sufficient for C code, enbale (SW/HW)
MMU, jump to core kernel start_kernel

– And providing exception vectors
● Errors, Faults (page faults), etc.

Porting Linux
Initial kernel bringup

● Typical init process
● start_kernel

– Sequentially initialize the kernel.
– Initialize lockdep/stack canary
– boot_cpu_init. Activate the first processor using hotplug.
– setup_arch. Architectural specifics. For example:

● Low-level CPU and platform init
● Paging (VM) enabled
● Data passed in from the bootloader (device tree)
● On S+Core: cpu_cache_init, tlb_init, bootmem_init, paging_init,

and resource_init.
● On PowerPC: enabling xmon debugger and debug output.

Porting Linux
Initial kernel bringup

● Typical init process
● start_kernel

– setup_command_line. Use the bootmem allocator to
stash away the kernel command line.

– sort_main_extable. Sort the kernel symbol table for later
use by the module loader (recent speedup work here by
Alan Jenkins and also Carmelo's LKM fast loader later).

– mm_init. Calls arch-specific mem_init, sets up various
kernel caches and enables vmalloc.

– sched_init. Does the heavy lifting to prep the scheduler
(allocating using bootmem the runqueus and CFS bits).

Porting Linux
Initial kernel bringup

● Typical init process
● start_kernel

– early_irq_init. Allocate the IRQ structs.
– init_IRQ. Architectural counterpart to early_irq_init,

providing platform specific stuff.
– timekeeping_init. Generic function that determines which

clocksources to use and configures them.
– time_init. Corresponding architectural specifics.
– console_init. Enables the console to that we can begin to

output the various kernel boot messages.
– kmemleak_init. Initialize Catalin's nifty leak detector.

Porting Linux
Initial kernel bringup

● Typical init process
● start_kernel

– calibrate_delay. Determine the “bogomips”.
– fork_init. Prepare to be able to fork (clone) new tasks.

Calls down into the arch code to complete this.
● rest_init

– Prepare the scheduler (including RCU)
– Start the master kernel thread (kthreadd)
– Setup the idle task and schedule into init
– After that heading toward userspace

Porting Linux
Initial kernel bringup

● Platforms
● As with U-Boot, platforms build upon architectures.

– PowerPC implements a clean “platforms” directory.
– ARM mixes things around under the CPU type.
– Others (such as x86) don't really handle many different

(non-PC) platforms all that well (yet).
– Some platforms use structs of function pointers

● PowerPC uses a define_machine macro, including a probe
function that can selectively utilize the device tree.

● ARM uses a MACHINE_STARTS macro, but is not yet as
flexible. For example, board-n8x0.c registers n8x0_init_machine
to be called for the Nokia N8xx tablet initialization.

Porting Linux
Initial kernel bringup

● Platforms
● Platform devices

– Many platforms are built using standard parts such as
PCI (or PCI like) devices that can be registers and
managed generically.

– Some “devices” are connected to legacy buses or aren't
really on a traditional bus at all

● As is the case for many mapped SoC devices.

– The Linux driver model documentation (in the
“Documentation/” kernel directory) will show you how to
register and manage platform devices

● Needed for power management.

Porting Linux
Initial kernel bringup

● Porting to a new platform
● This is far easier than porting to a new arch, since

it's just a variant.
● Typically, you can base your platform port on an

existing platform for the arch in question and more
legitimately copy/paste where not generalizable.

● Make sure you educate the kernel about system
geometry (RAM size, etc.) and location of PCI.

● Use the platform abstraction for any generic
mapped devices not managed elsewhere.

Porting Linux
Device Drivers

● Basic architecture and platform support have
little meaning without drivers for peripherals.

● Fortunately, Linux already supports a large
(growing) number of existing devices that may
already cover the majority of your design.

● Refer to Linux Device Drivers (3rd edition) for
more information about writing drivers.

Porting Linux
Debugging

● Many debugging and diagnostic options.
● gdb. Can be used to attach to a remote hardware

(or virtual machine) gdbstub and issue instructions.
● ftrace. An in-kernel function tracing framework,

originally used to measure kernel latencies.
● kexec/crash/kdump. Can be used to boot an aux.

kernel if the main one crashes, to capture state. A
recent enhancement allows “flight recorder” mode.

● Ksplice. Dynamically patch your running kernel.
● Performance Events (“perf”). Capture system

performance metrics (and almost anything else).

Porting Linux
Working with upstream

● Why you need upstream
● Less “bitrot” due to constantly evolving upstream

kernel. Reduces “rebasing vs. retaining” tradeoff.
● More influence on future development. People will

care about your project if it has code upstream.
● 70% of total contributions to the kernel come from

developers working at corporations that consider
such participation a competitive edge.

● Source: Linux Foundation analysis.

Porting Linux
Working with upstream

● Development Trees
● The official kernel lives in Linus Torvald's “git” tree

on git.kernel.org
● There are countless other “git” trees available.

– linux-next is a stepping stone
● Stephen Rothwell posts a new tree each day
● Made from 140 “git” trees that are merged

– staging is for immature code
● Lives in a special kernel directory (harder for arches)
● Greg Kroah-Hartman periodically updates it

● Please read Documentation/development-process

Porting Linux
Working with upstream

● Where do I go from here?
● Check the MAINTAINERS file to see who owns the

architecture or other kernel subsystem concerned.
– Reach out to the community for advice if unsure.

● Learn to use “git”, “quilt”, and the git email features.
● Consider the “staging” tree for immature code.
● Prepare your work for linux-next.

– Track Stephen Rothwell's tree regularly and post a “git”
tree of your patches.

– Code that passes review and is in linux-next has a very
good chance of being merged upstream in the next
“merge window” by the relevant maintainer.

Porting Linux
Working with upstream

● Mailing Lists
● http://vger.kernel.org
● LKML – Linux Kernel Mailing List
● Linux-next Mailing List
● Architectural Maintainer Lists
● Greg Kroah-Hartman's Driver Development List
● etc.

http://vger.kernel.org/

Porting Linux
Trends

● Boot time
● Work is going on in boot time reduction. See the

talk today and upstream “bootchart”/“timechart”.

● Dynamic Power Management
● Rafael J. Wysocki implemented dynamic suspend

of individual buses in a recent rework.

● Flattened Device Tree
● Continued work is happening here. Thanks to Grant

Likely and others for their efforts.

Porting Linux
Links

● LWN - http://www.lwn.net/
● LKML - http://vger.kernel.org/
● Understanding the Linux Kernel
● Linux Kernel Development
● Linux Device Drivers (LDD3)
● Building Embedded Linux Systems
● Linux Kernel in a nutshell

http://vger.kernel.org/

Porting Linux
Disclaimer

● I do not speak for my employer.

● Web: http://www.jonmasters.org/
● Email: jcm@jonmasters.org

mailto:jcm@jonmasters.org

Questions?

Porting Linux
Trends

● Devtmpfs
● Devfs v2.0? Not quite.

● IO Bandwidth Limiting
● Several proposals (dm-ioband, IO scheduler) but

nothing agreed on just yet.

● Swap
● Compcache. Compressed RAM alternative to swap.

Porting Linux
Trends

● Virtualization
● Various work to implement low-overhead (even low-

latency “Real Time”) enhancements in KVM.
● KSM. Kernel Shared Memory allows dynamic

sharing of identical pages and is just one cool
technology recently pulled into KVM.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

