Go RISC-V Go: The State of Software Development Tools for RISC-V

KHEM RAJ

#lfelc @himvis
Agenda

- Toolchains
- System tools
- Language Runtimes
- Operating Systems
Emulators

• Upstream QEMU support RISC-V
 – Emulate RISC-V system on x86
 – Vice-versa
 – https://wiki.qemu.org/Documentation/Platforms/RISCV

• QEMU 5.0
 – Experimental support for hypervisor extensions
 – Goldfish RTC, generic Linux syscon drivers

• TinyEMU
 – https://bellard.org/tinyemu/
 – Buildroot based port for RV32 and RV64 toolchains
 – Emulates RV128IMAFDQC base ISA

• Spike - https://github.com/riscv/riscv-isa-sim
 – RISC-V ISA Simulator

• Renode - https://github.com/renode/renode
 – virtual development tool for multi-node embedded
Bootloaders

• Upstream Support
 – Coreboot
 – U-boot
 – BBL
 – OpenSBI
 • Implements RISC-V Supervisor Binary Interface Spec
 – https://github.com/riscv/riscv-sbi-doc
Toolchains

• GCC10
 – Added support for new assembly instructions
 • Emits fmv.x.w/fmv.w.x instead of fmv.x.s/fmv.s.x
 • Needs binutils 2.30+

• Bit Manipulation Instructions extension
 • Emitted in code directly
 • Available as intrinsics
• RISC-V Target support in LLVM 9
• RISC-V LTO support in clang 10
• Bit Manipulation Extension for RISC-V
• Support Upstream Since 2017
• Added support for privileged spec v1.9.1
• Assembler options to set ISA versions
 – -misa-spec
• GDB 9
 – GDB server is now supported on RISC-V GNU/Linux
 – Supports Linux Native and Target Configuration since 8.3
 • riscv*-*-linux*
JTAG Debug for RISC-V Cores

• Out of tree OpenOCD port
 – Multi-core, 64-bit, etc.

• Segger Embedded Studio
 – Single core, 32-bit only

• Lauterbauch TRACE32
System C library

• Musl now supports RISC-V 64bit (since 1.1.23)
 – 32bit port not available yet

• Glibc
 – 32bit port is submitted
 – Might show up in 2.32
 – 64-bit RISC-V requires a minimum kernel headers version of 5.0
System C library

• Newlib
 – Syscall improvements
 • only the required syscall argument registers are set.
 – Newlib nano libm supports RISC-V
 – RISC-V size optimized mem* functions
Languages

- **Go**
 - 1.14 contains experimental support for 64-bit RISC-V
 - https://golang.org/doc/go1.14#riscv
 - https://github.com/golang/go/issues/27532
 - CGO Support
 - https://github.com/4a6f656c/go/tree/riscv64-cgo
 - Supported Out of tree
 - https://github.com/4a6f656c/riscv-go/
 - Based on 1.13 release
 - Used with OpenEmbedded/Yocto project
 - https://github.com/riscv/meta-riscv
 - Will work on 1.14 support
 - Bootstrap
 - https://github.com/carlosedp/riscv-bringup/blob/master/build-golang.md
Rust

• Rust now uses llvm 10.x
 – https://github.com/rust-lang/rust/pull/67759
 – Means RISC-V backend is available
 – Tier-2 target
• Rust Embedded Workgroup
 – https://github.com/rust-embedded
• Baremetal
 • Uses 1.36+ Release
• riscv-rt - Minimal runtime/startup for RISC-V CPU’s
 – https://github.com/rust-embedded/riscv-rt
• Low level access to RISC-V processor
 – https://github.com/rust-embedded/riscv
 • Needs 1.42.0 or newer
• Wasmtime/Cranelift
 – A standalone runtime for WebAssembly
 • https://github.com/bytecodealliance/wasmtime
Language Runtimes

• Java
 – ZeroVM backend works
 – No hotspot

• Ocaml
 – Out of tree support
 • https://github.com/nojb/riscv-ocaml/commits/trunk
 – Crosscompiler docker image
 • https://github.com/kayceesrk/riscv-ocaml-cross
Linux Operating Systems

- Debian
 - https://wiki.debian.org/RISC-V
 - SiFive "Freedom U540" SoC (quad-core RV64GC) / "HiFive Unleashed"
 - QEMU
Mid-2019
Follow Grey Line

Latest
https://buildd.debian.org/stats/graph-ports-big.png
Linux Operating Systems

• Fedora
 – Fedora for RISC-V is mirrored as a Fedora “alternative” Architecture
 – Fedora Minimal, Developer, GNOME images
 – Supported Targets
 • Virtual – QEMU
 – Can run on libvirt/QEMU with Graphics (Spice)
 – SiFive Unleashed
 • Fedora GNOME Image can run on SiFive Unleashed
 – Needs Expansion Board, PCIE graphics Card & SATA SSD)
Linux Operating Systems

- OpenSUSE
 https://en.opensuse.org/openSUSE:RISC-V
 - Tumbleweed images
 - Runs using systemd-nspawn
 - Packages
 - https://download.opensuse.org/ports/riscv/
- Gentoo
Embedded Linux

- OpenEmbedded/Yocto Project
- RV32/RV64 Support in Latest 3.1 Release
 - https://lists.yoctoproject.org/g/yocto/message/49201
 - QEMU 64bit is in Core
 - Linux-yocto supports RV64
 - Supports Both Musl and Glibc
 - Available ABIs riscv64 riscv32 riscv64nf riscv32nf
- Architecture/machine layer (meta-riscv)
 - https://github.com/riscv/meta-riscv
 - Supports baremetal SDK
 - RV32/RV64
 - Newlib and baremetal SDKs
 - freedom-u540
 - QEMU RV32
 - Supports Cross building Go packages
- Supports Clang as system compiler for RV32/RV64
- QEMURISCV64 can run Yocto automatic tests (ptest)
 - bitbake -ctestimage <image>
Embedded Linux

• Buildroot - Upstreamed
 – Full support for RV32 and RV64 architecture
 • https://www.embecosm.com/2019/04/01/buildroot-support-for-32-bit-risc-v/
 • Supports kernel 5.4.x
 • Regularly tested
 – http://autobuild.buildroot.net/?arch=riscv64
 • Supports both musl/glibc
 – Musl not supported on RV32
 • Supports QEMU machines (riscv64-virt, riscv32-virt)
Embedded Linux

• OpenWRT
 – Added support for SiFive RISC-V
 • https://openwrt.org/docs/techref/hardware/soc/soc.sifive
 – HiFive Unleashed (development board)
 – FPGA-based implementation (Virtex7)
 – QEMU
 – Supports musl/glibc
 – https://freesoft.dev/program/125876759
BSD Operating Systems

• FreeBSD – Since 2016
 – Supported Devices
 • HiFive Unleashed (SiFive FU540)
 • Spike
 • QEMU
 – https://riscv.org/software-tools/freebsd/
 – https://wiki.freebsd.org/riscv
 – IRC - #freebsd-riscv

• NetBSD
 – Added in 10.0
Embedded Software/RTOS

- FreeRTOS – Upstream
 - https://www.freertos.org/Using-FreeRTOS-on-RISC-V.html
- Supported Boards
 - RTOS Demo for RISC-V MiFive M2GL025 / Renode
 - RISC-V RV32M1 VEGAboard Demo (RI5CY Core)
 - QEMU sifive_e Model

AWS Announces RISC-V Support in the FreeRTOS Kernel

Posted On: Feb 26, 2019

RISC-V support is now available in the FreeRTOS kernel, a feature enabling embedded developers to create IoT applications on the officially supported FreeRTOS kernel for microcontrollers that use the free, open, and extensible RISC-V Instruction Set Architecture (ISA).
Embedded Software/RTOS

• Zephyr
 – Upstream Since 1.13.0
 • support for HiFive1
 • https://www.sifive.com/blog/getting-started-with-zephyr-rtos-v1.13.0-on-risc-v
 – Supports LiteX soft SoC RV32 VexRiscv CPU
 – Part of Standard Zephyr SDK
 • https://github.com/zephyrproject-rtos/zephyr/releases/tag/zephyr-v2.3.0
 – Hard-float support
 – Compiler tunes (march/mabi)
Embedded Software/RTOS

• RTEMS
 – Upstream support for simulators
 – RISC-V Clang/LLVM support in the RTEMS WAF build system
 – Add RISC-V GDB for RTEMS
 • https://devel.rtems.org/ticket/3453
 – RISC-V toolchain support 64-bit chips
 • riscv target supports both rv32 and rv64
 – Freedom E310 Arty A7 FPGA BSP Added
 • https://devel.rtems.org/ticket/3785
Embedded Software/RTOS

• Xv6 Supports RISC-V
 – modern reimplementation of Sixth Edition Unix in ANSI C
 – Used in Educational institutions

• HelenOS
 – Micro-kernel approach
Help Needed

• Java
 – No hotspot port yet
• V8
• NodeJS
• Dart
Come Join the Us

- Most Software is Upstream!
 - Use a project’s regular communication mechanisms
- Specific to RISC-V
 - https://github.com/riscv/: Contains in-progress ports
 - sw-dev@groups.riscv.org: Software discussion
 - patches@groups.riscv.org: Patches to RISC-V ports
- #riscv on Freenode: General RISC-V discussion
- linux-riscv@lists.infradead.org: RISC-V Linux Port
- Stack Overflow
 - https://stackoverflow.com/questions/tagged/riscv
Come Join the Us

- RISC-V International Maintained Software Status
- Submit Pull requests for updating it
 - https://github.com/riscv/riscv-software-list
Thanks for your time