
Alexey Brodkin,

Engineering manager, Synopsys

ELCE 2019, October 28, 2019

Multicore Application Development with Zephyr RTOS

© 2019 Synopsys, Inc. 2

Open Hub says:

• Most experienced in C

• First commit about 7 years ago

• Most recent commit about 1 month ago

• Has made 642 commits

• Most contributions to:

– U-Boot

– Linux kernel

– Buildroot

– Yocto Project / OpenEmbedded

– Zephyr

– uClibc

– etc

Engineering manager @ Synopsys

Alexey Brodkin

https://www.openhub.net/accounts/abrodkin

© 2019 Synopsys, Inc. 3

Agenda

• Use-cases for multicore embedded processors

• Multicore support models review: AMP vs SMP

• AMP & SMP in Zephyr

• Challenges with SMP & Zephyr

• Performance scaling on SMP system

© 2019 Synopsys, Inc. 4

Why go multicore?

Challenges

• Power consumption increases dramatically

with increase of clock rate

• Limited MHz budget

– Limited clock rate for a given tech process

• Multiple critical or resource-hungry task

• Very specific tasks (DSP, CNN, etc.)

Solution

• Use multiple CPUs or CPU cores

– Scale MHz budget

– Schedule critical tasks on dedicated CPU cores

– Really parallel execution, not pseudo

• Use separate “accelerator” core(s)

– Offload specific tasks

– Use very specialized accelerators

– DSP

– Crypto-processor

– Vector-processor

– Application-specific instruction-set processor

(ASIP)

Increase performance & responsiveness, decrease power consumption

© 2019 Synopsys, Inc. 5

• 5G/LTE modems

• Audio & video DSPs

• AI & vision processors

• Human-interface devices

A lot of real-life use-cases

Examples of multicore solutions

© 2019 Synopsys, Inc. 6

AMP clusterSMP cluster

Modern heterogeneous SoC
Combination of multiple different processors

Sensor hubDSP

Vision

processor

with CNN
General purpose

CPU cluster

ARC HS48ARC EV74 ARC EM11D ARC EM4

Data bus

UART USB DDREthernet

Mailbox

Interrupts
Shared

memory

© 2019 Synopsys, Inc. 7

Multicore support models: AMP

• Completely custom system design

– Each core might be unique

– Multiple SW/API standards

• Wide variety of hardware IPCs

– Shared memory

– Proprietary mailboxes

– Cross-core interrupts

– HW semaphores etc

• Manual SW partitioning

• Non-scalable

– There’s no simple way to add yet another core

Asymmetric multiprocessing

Thread pool

SoC

CPU core A CPU core B

Thread

RTOS

App

© 2019 Synopsys, Inc. 8

Multicore support models: SMP

• Strong requirements for system design

• CPU cores are equal from SW stand-point*

• Standard HW IPCs, typically

– Shared memory

– Coherent caches**

– Cross-core interrupts

• Complex run-time scheduling

– Load-balancing

– Task pinning

• Scalable

– Just add another core in cluster

Symmetric multiprocessing

* Except early start when there’s a dedicated master and slaves are all the rest

** If CPUs have caches

Thread pool

SoC

CPU core #1 CPU core #2

Thread

Operating system

Thread

© 2019 Synopsys, Inc. 9

Why use operating system

Abstractions of hardware

• Processor abstraction

– Processes

– Threads

• Peripherals abstraction

– Complex subsystems

– Device drivers

Implementation of complex services

• Crypto

• File systems

• Communication

– Ethernet

– USB

– CAN

Significantly simplifies SW development

© 2019 Synopsys, Inc. 10

AMP in Zephyr

• Arduino/Genuino 101*

– Intel Quark SE SoC

– Intel x86 core

– ARC EM4 core

– Very limited IPCs

– Shared memory: 80KiB @ 0xA8000000

– ARC EM start/stop signals via

Quark’s SS_CFG regs

• NXP LPCXPRESSO54114

– Arm Cortex M4F & dual Arm Cortex-M0

• ST STM32H747I Discovery

– Arm Cortex-M7 & Arm Cortex-M4

• PSoC6 WiFi-BT Pioneer Kit

– Arm Cortex-M4 & Arm Cortex-M0

Available from the very first commit

* Arduino 101 support got dropped from Zephyr in v2.0.0

** Nano- & microkernels replaced by unified kernel in v1.14

Thread pool

Intel Quark SE SoC

Intel Quark

Processor Core

processor

ARC Sensor

Subsystem with

ARC EM core

Thread

Zephyr

microkernel**

Thread pool

Thread

Zephyr

nanokernel**

© 2019 Synopsys, Inc. 11

Simplest AMP example

Intel Quark SE

/* Start of the shared 80K RAM */

#define SHARED_ADDR_START 0xA8000000

#define ARC_READY (1 << 0)

#define shared_data ((volatile struct shared_mem *) SHARED_ADDR_START)

struct shared_mem {

u32_t flags;

};

int z_arc_init(struct device *arg)

{

/* Start the CPU */

SCSS_REG_VAL(SCSS_SS_CFG) |= ARC_RUN_REQ_A;

/* Block until the ARC core actually starts up */

while ((SCSS_REG_VAL(SCSS_SS_STS) & 0x4000) != 0U) {}

/* Block until ARC's quark_se_init() sets a flag

* indicating it is ready, if we get stuck here ARC has

* run but has exploded very early */

while ((shared_data->flags & ARC_READY) == 0U) {}

}

ARC EM4

static inline void quark_se_ss_ready(void)

{

shared_data->flags |= ARC_READY;

}

static int quark_se_arc_init(struct device *arg)

{

ARG_UNUSED(arg);

quark_se_ss_ready();

return 0;

}

SYS_INIT(quark_se_arc_init, POST_KERNEL,
CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);

Arduino/Genuino 101

© 2019 Synopsys, Inc. 12

• Life Cycle Management (LCM) – remoteproc

• Inter Processor Communications (IPC) – RPMSg

• Transport abstraction layer – Virtio

• Hardware abstraction layer (HAL) – libmetal

• Communications between different platforms

– Linux

– RTOS

– FreeRTOS

– NuttX

– Zephyr

– Bare-metal

• Currently supported: NXP LPC54114

• Linaro connect presentation
HKG2018-411: OpenAMP Introduction

Attempt to standardize interactions in HMP systems

OpenAMP in Zephyr

Using VRING0 Using VRING1 Optional

Slave coreMaster core

Dequeue
from USED
Ring Buffer

Get received
buffer from

queue

Pass it to the
endpoint
callback

Enqueue the

freed buffer

Trigger
interrupt for

the other core

Enqueue to
AVAIL Ring

Buffer

Dequeue
from AVAIL
Ring Buffer

Get
transmission

buffer

Write RPMsg
Header and
payload data

Enqueue

the buffer

Trigger
interrupt for

the other core

Enqueue to
USED Ring

Buffer

V
ir
ti
o

Slave coreMaster core

Dequeue
from USED
Ring Buffer

Get
transmission

buffer

Write RPMsg
Header and
payload data

Enqueue

the buffer

Trigger
interrupt for

the other core

Enqueue to
AVAIL Ring

Buffer

Dequeue
from AVAIL
Ring Buffer

Get received
buffer from

queue

Pass it to the
endpoint
callback

Enqueue the
freed buffer

Trigger
interrupt for

the other core

Enqueue to
USED Ring

Buffer

V
ir
ti
o

Co-processor to host

Host to co-processor

http://connect.linaro.org.s3.amazonaws.com/hkg18/presentations/hkg18-411.pdf

© 2019 Synopsys, Inc. 13

• Smaller code size

• Simpler API

• May use “static API”

• Modular

• No remoteproc/LCM

• Currently supported: NXP LPC54114

• ELCE 2018 presentation by Diego Sueiro

“Linux and Zephyr “talking” to each other in

the same SoC”

RPMsg-Lite for devices with limited resources

OpenAMP in Zephyr cont’d

https://events.linuxfoundation.org/wp-content/uploads/2017/12/Linux-and-Zephyr-%E2%80%9CTalking%E2%80%9D-to-Each-Other-in-the-Same-SoC-Diego-Sueiro-Sepura-Embarcados-1.pdf

© 2019 Synopsys, Inc. 14

• February 2018

– Initial support with ESP32 in v1.11.0

https://github.com/zephyrproject-rtos/zephyr/pull/6061

• February 2019

– Added x86_64 in v1.14.0

https://github.com/zephyrproject-rtos/zephyr/pull/9522

– “...Virtualized SMP platform for testing under QEMU...”

• September 2019

– ARC supported in v2.0.0

https://github.com/zephyrproject-rtos/zephyr/pull/17747

– ARC nSIM instruction set simulator &

ARC HS Development Kit board

Requires OS-wide support, thus only emerging lately

SMP in Zephyr: historical overview

* ESP32 only supports shared memory, no cross-core IRQs

ESP-WROOM-32

development board

* Author: Benoît Canet

Source: http://lists.gnu.org/archive/html/qemu-devel/2012-02/msg02865.html

Licensed under CC BY 3.0: https://creativecommons.org/licenses/by/3.0/

QEMU mascot*

Synopsys DesignWare

ARC HS Development Kit

https://github.com/zephyrproject-rtos/zephyr/pull/6061
https://github.com/zephyrproject-rtos/zephyr/pull/9522
https://github.com/zephyrproject-rtos/zephyr/pull/17747
http://lists.gnu.org/archive/html/qemu-devel/2012-02/msg02865.html
https://creativecommons.org/licenses/by/3.0/

© 2019 Synopsys, Inc. 15

SMP in Zephyr: current status

Ready

• Use of certain HW capabilities

– Shared memory with coherent caches*

– Cross-core IRQs**

– Cluster-wise wall-clock

– HW atomic instructions***

• Threads pinning to CPU(s)

– Via CPU affinity API:

k_thread_cpu_mask_xxx()

Needs more work

• More architectures and platforms

• More tests & benchmarks

• Support for more cores in the cluster

– Now up-to 4 cores

• Fancier scheduler

– Account for CPU migration costs

• SMP-aware Zephyr debugging with

OpenOCD/GDB

Still in its early days

* If CPUs have caches

** For less latencies of premature thread termination

*** Used via compiler built-ins (CONFIG_ATOMIC_OPERATIONS_BUILTIN)

or via hand-written implementation in assembly

(ATOMIC_OPERATIONS_CUSTOM)

© 2019 Synopsys, Inc. 16

• Extra preparations for slave cores

– Setup idle threads: init_idle_thread()

– Allocate per-core IRQ stacks: Z_THREAD_STACK_BUFFER(_interrupt_stackX)

– Start the core: z_arch_start_cpu()

• irq_lock()

– UP: z_arch_irq_lock()

– SMP: z_smp_global_lock() = z_arch_irq_lock() + spinlock on global_lock

• Prepare scheduler for SMP

– z_sched_abort()

• z_arch_switch(new_thread, old_thread) instead of z_swap()

– Lower-level

– Scheduler unaware

– No spinlocks inside architecture-specific assembly code

Most of changes done in architecture & platform agnostic code

Changes required to support SMP in Zephyr

© 2019 Synopsys, Inc. 17

ARConnect

Hardware requirements for SMP

• Same ISA & functionally of all cores

• Shared memory

– External RAM

– SRAM

– DDR

– On-chip memory

Closely/Tightly-Coupled Memories are PRIVATE

– ARC: ICCM/DCCM

– ARM/RISC-V: ITCM/DTCM

• Flexible IRQ management

– Inter-Core Interrupt Unit (ICI)

– Interrupt Distribution Unit (IDU)

• Cluster-wise clock source

– Global Free-Running Counter (GFRC)

ARC HS primer
ARC HS

DCCM ICCM

D$ I$

INTC

IDU

ICI

GFRC

ARC HS

DCCM ICCM

D$ I$

INTC

Cache Coherency Unit

Cluster Shared Memory

External memoryExternal IRQs

L2$

© 2019 Synopsys, Inc. 18

Challenges designing application for SMP system

Task/thread scheduling

• Scheduler type

– SCHED_DEADLINE

– SHED_DUMB

– SCHED_SCALABLE

– SCHED_MULTIQ

• Migration between CPU cores

– Automatic core selection (by default)

– Task/thread pinning

SCHED_CPU_MASK – only for SHED_DUMB

Shared resources...

• Clock source

• Caches (while managing them)

• Peripherals

– Serial port

– SPI, I2C, Ethernet, etc

...add overhead for access serialization

• IRQ masking

irq_lock() → z_smp_global_lock()

• Spin-locks

• Additional SW/HW barriers

Software peculiarities

© 2019 Synopsys, Inc. 19

SMP benefits easily available with Zephyr

• Build SMP application in Zephyr

– Change Zephyr configuration via Kconfig

– Enable CONFIG_SMP by make menuconfig

– SMP tests will do it for you via
tests/kernel/smp/prj.conf

– Optionally set CONFIG_ MP_NUM_CPUS=x

– Recompile with make

• Get performance scaling

For supported architectures and platforms/boards

© 2019 Synopsys, Inc. 20

#define THREADS_NUM 16

#define STACK_SIZE XXX

static K_THREAD_STACK_ARRAY_DEFINE(tstack, THREADS_NUM, STACK_SIZE);

static struct k_thread tthread[THREADS_NUM];

void pi_thread(void *arg1, void *arg2, void *arg3)

{

... calculate Pi value ...

}

void main(void)

{

...

for (i = 0; i < THREADS_NUM; i++) {

k_thread_create(&tthread[i], tstack[i], STACK_SIZE,

(k_thread_entry_t)pi_thread,

NULL, NULL, NULL,

K_PRIO_COOP(10), 0, K_NO_WAIT);

}

...

}

SMP Pi example: https://github.com/zephyrproject-rtos/zephyr/pull/18849

Utilization of multiple cores in SMP system is easy

https://github.com/zephyrproject-rtos/zephyr/pull/18849

© 2019 Synopsys, Inc. 21

Evaluation of SMP benefits for real applications
Scaling depends on workload

1

2

3

4

1 2 3 4

S
p
e

e
d

-u
p

,
n
o

rm
a
liz

e
d

CONFIG_MP_NUM_CPUS

Zephyr,
SMP Pi, 16 threads

240 digits

120 digits

1

2

3

4

1 2 3 4

S
p
e

e
d

-u
p

,
n
o

rm
a
liz

e
d

Number of workers on quad-core CPU

Linux,
EEMBC’s “rotate-color1Mp”

© 2019 Synopsys, Inc. 22

• Depending on use-case and system configuration choose

– SMP for a capable SoC

– AMP for any HW

– Heterogeneous multiprocessing (HMP) as a combination of AMP & SMP

• Align HW & SW design

– Configure HW according to requirements of SW stack

– Make sure given HW configuration is supported in SW

• SMP allows for easy scaling

– Depending on use-case might scale better or worse

Zephyr RTOS allows utilization of powerful multi-core systems

Conclusion

© 2019 Synopsys, Inc. 23

• Get sources on GitHub: https://github.com/zephyrproject-rtos/zephyr

• Report bugs report & propose enhancements via GitHub issues

https://github.com/zephyrproject-rtos/zephyr/issues

• Contribute fixes & improvements via pull-requests

https://github.com/zephyrproject-rtos/zephyr/pulls

We need your help!

Participate

https://github.com/zephyrproject-rtos/zephyr
https://github.com/zephyrproject-rtos/zephyr/issues
https://github.com/zephyrproject-rtos/zephyr/pulls

Thank You

