
© Copyright 2020 Xilinx

Building Bare Metal Toolchains
Crosstool-ng and Yocto Project

Mark Hatle
Senior Software Engineer
June 30th, 2020

© Copyright 2020 Xilinx

Presentation Summary

2

Recently I was tasked to create a bare metal toolchain to create software for a
variety of embedded processor architectures and configurations. Crosstool-ng
is often used to create these toolchains, but Yocto Project SDK builder is
capable of doing this as well. This presentation will compare booth crosstool-ng
and the Yocto Project for this task, include my experience working with both
tools, include Yocto Project configuration information and give the audience an
understanding when they may want to use one tool vs the other.

© Copyright 2020 Xilinx

Agenda

1

4Crosstool-ng

4Yocto Project SDK Builder

4Experience

4Yocto Project Configuration

4Recommendations

4Questions

© Copyright 2020 Xilinx

Crosstool-ng (http://crosstool-ng.github.io)

4

4“Crosstool-NG is a versatile (cross) toolchain generator. It supports many
architectures and components and has a simple yet powerful menuconfig-style
interface.”

4Latest release 1.24.0

4ct-ng menuconfig
¬ Most items have help entry

4Good way to construct a toolchain, especially for beginners
¬ ct-ng list-samples -- Many sample configurations

4Easily reproducible from source builds

© Copyright 2020 Xilinx

Crosstool-ng (http://crosstool-ng.github.io)

5

4Runtime relocatable
¬ Can be installed in one location and mounted/run from many

4Binaries are specific to the host environment they were built for
¬ I.e. Binaries built on latest Ubuntu likely would not work on RHEL 7
¬ Building for a different platform, i.e. Cygwin requires a separate Cygwin cross compiler to be

available

© Copyright 2020 Xilinx

Crosstool-ng

6

© Copyright 2020 Xilinx

Crosstool-ng

…
CT_USE_PIPES=y
CT_EXTRA_CFLAGS_FOR_BUILD="”
CT_EXTRA_LDFLAGS_FOR_BUILD="”
CT_EXTRA_CFLAGS_FOR_HOST="”
CT_EXTRA_LDFLAGS_FOR_HOST="”
…
CT_ARCH="microblaze”
CT_ARCH_SUPPORTS_BOTH_MMU=y
CT_ARCH_SUPPORTS_BOTH_ENDIAN=y
CT_ARCH_DEFAULT_HAS_MMU=y
…
CT_ARCH_DEFAULT_BE=y
CT_ARCH_BE=y
CT_TARGET_CFLAGS="”
CT_TARGET_LDFLAGS="”
CT_ARCH_microblaze=y

CT_MULTILIB=y
CT_ARCH_USE_MMU=y
CT_ARCH_ENDIAN="big”
CT_ARCH_FLOAT="”
CT_USE_SYSROOT=y
CT_SYSROOT_NAME="”
CT_SYSROOT_DIR_PREFIX=””
…
CT_CC_GCC_HAS_LTO=y
CT_CC_GCC_USE_LTO=y
CT_CC_GCC_HAS_PKGVERSION_BUGURL=y
CT_CC_GCC_HAS_BUILD_ID=y
CT_CC_GCC_HAS_LNK_HASH_STYLE=y
…

7

© Copyright 2020 Xilinx

Crosstool-ng

8

© Copyright 2020 Xilinx

Yocto Project

9

4The Yocto Project is a full distribution build environment. Each distribution
configuration is based on a local project configuration, distribution
configurations, and machine (target) configuration.

4The Yocto Project, while Linux distributions is its historic target, can build
different operating systems and even bare metal.
¬ FreeRTOS
¬ OpenAMP
¬ Bare Metal

4Outputs include
¬ Run-time images
¬ SDK / eSDK

© Copyright 2020 Xilinx

Yocto Project SDK

10

4The Yocto Project SDK purpose is to provide an application build environment.

4Targeted SDK
¬ An SDK that matches an operating system runtime environment

4Defined SDK
¬ An SDK where each component is defined to be included in the SDK

4SDKs can be multilib enabled
¬ Multilibs are built independently of each other
¬ Slower, but safer approach for complex configurations

© Copyright 2020 Xilinx

Yocto Project SDK

11

4Self-extracting installation file

4Built to isolate the SDK environment from the host system
¬ SDK includes its own glibc, and some runtime components
¬ SDK can build its own cross-compilers for Cygwin and other environments, as needed

4Installation and runtime locations must be the same
¬ Automatic runtime relocation is not supported

© Copyright 2020 Xilinx

Yocto Project SDK

12

© Copyright 2020 Xilinx

Yocto Project SDK Configuration
xilinx-standalone.conf
DISTRO_NAME = "Xilinx Standalone Distro”
DISTRO_VERSION = "1.0”
TARGET_VENDOR = "-xilinx”
TCLIBC = "newlib”
TCLIBCAPPEND ="”
SDK_VERSION = "xilinx-standalone”

Hold this until it gets merged in core, we need libc.a and libgloss.a for cross-Canadian
LIBC_DEPENDENCIES_append = " newlib-staticdev libgloss-staticdev”

Clear defaults
DISTRO_FEATURES_BACKFILL_xilinx-standalone = "”
VIRTUAL-RUNTIME_init_manager_xilinx-standalone = "”
PREFERRED_PROVIDER_virtual/kernel = "linux-dummy”

No cached configsite files
TOOLCHAIN_NEED_CONFIGSITE_CACHE = "”

Workaround for pulling in nativesdk-mingw-w64-winpthreads
TOOLCHAIN_HOST_TASK_append_sdkmingw32 = " nativesdk-mingw-w64-winpthreads"

13

© Copyright 2020 Xilinx

Yocto Project SDK Configuration
microblaze-tc.conf
require conf/multilib.conf
require conf/machine/include/microblaze/arch-microblaze.inc
require conf/machine/include/baremetal-tc.conf

Define all of the multilibs supported by this configuration
MULTILIB_GLOBAL_VARIANTS =
"${@extend_variants(d,'MULTILIBS','multilib’)}”
MULTILIBS += "multilib:libmble”
MULTILIBS += "multilib:libmbbs”
MULTILIBS += "multilib:libmbp”
...
MULTILIBS += "multilib:libmblem64bspmfpd”

Base configuration
CFLAGS:
DEFAULTTUNE = "microblaze”
AVAILTUNES += "microblaze”
BASE_LIB_tune-microblaze = "lib”
TUNE_FEATURES_tune-microblaze = "microblaze bigendian”
PACKAGE_EXTRA_ARCHS_tune-microblaze =
"${TUNE_PKGARCH}"

le
CFLAGS: -mlittle-endian
DEFAULTTUNE_virtclass-multilib-libmble = "microblazele”

AVAILTUNES += "microblazele”
BASE_LIB_tune-microblazele = "lib/le”
TUNE_FEATURES_tune-microblazele = "microblaze”
PACKAGE_EXTRA_ARCHS_tune-microblazele =
"${TUNE_PKGARCH}”

bs
CFLAGS: -mxl-barrel-shift
DEFAULTTUNE_virtclass-multilib-libmbbs = "microblazebs”

AVAILTUNES += "microblazebs”
BASE_LIB_tune-microblazebs = "lib/bs”
TUNE_FEATURES_tune-microblazebs = "microblaze bigendian
barrel-shift”
PACKAGE_EXTRA_ARCHS_tune-microblazebs =
"${TUNE_PKGARCH}"

…

14

© Copyright 2020 Xilinx

Yocto Project SDK Changes

15

4Binutils
¬ Set different defaults to match prior toolchains

4GCC
¬ Set different default to match prior toolchains
¬ Restore some previously disabled newlib options (i.e. sysroot settings)
¬ Only build SDK GCC once, create symlinks for other multilibs (gnu-toolchain-canadian.bb)

4Newlib/Libgloss
¬ Adjust defaults
¬ Workaround an issue where multilibs conflicted
¬ Workaround an issue where the libgloss/newlib dependency wasn’t multilib aware

© Copyright 2020 Xilinx

Crosstool-ng vs Yocto Project SDK

Crosstool-ng

4Easy to use sample configurations

4Functionality limited to toolchains

4Host operating system library
dependencies

4Runtime relocatable

4Mingw, with external cross compiler

Yocto Project SDK

4Linux sample configurations, but not
bare metal

4Full features, toolchains, libc and
application libraries

4Host operating system separation

4Not runtime relocatable

4Supports mingw output

16

© Copyright 2020 Xilinx

My experiences crosstool-ng to Yocto
Project

17

© Copyright 2020 Xilinx

Xilinx Bare Metal Toolchains

18

4Transitioned from Crosstool-ng to Yocto Project SDK to unify toolchain source
and testing

4Transition was not painless from a development perspective
¬ Differences in the way Crosstool-ng and Yocto Project configured toolchain components

4Lots of questions about multilib configurations
¬ Things had always been done a certain way, and people who made those decisions were

either external or no longer with the company

4Initial goal was compatibility with former crosstool-ng and custom ARM
toolchain
¬ This includes pseudo runtime relocation capable

© Copyright 2020 Xilinx

Xilinx Bare Metal Multilibs

19

4See: https://github.com/Xilinx/meta-xilinx/blob/rel-v2020.1/meta-xilinx-
bsp/conf/machine/aarch32-tc.conf

4Aarch32
¬ Standard ARM (A profile) 32-bit instruction set
¬ Multilib config based on GNU/ARM defaults
¬ 17 multilibs defined

¬ aarch32, armv5tesoftfp, armv5tehard, armnofp, armv7nofp, armv7fpsoftfp, armv7fphard, armv7anofp,
armv7afpsoftfp, armv7afpthf, armv7asimdsoftfp, armv7asimdhard, armv7vesimdsoftfp, armvtvesimdhf,
armv8anofp, armv8asimdsoftfp, armv8asimdhard

¬ Custom defined to match GNU/ARM settings

https://github.com/Xilinx/meta-xilinx/blob/rel-v2020.1/meta-xilinx-bsp/conf/machine/aarch32-tc.conf

© Copyright 2020 Xilinx

Xilinx Bare Metal Multilibs

20

4See: https://github.com/Xilinx/meta-xilinx/blob/rel-v2020.1/meta-xilinx-
bsp/conf/machine/arm-rm-tc.conf

4ARM R/M
¬ Real-time Profile and M Microcontroller Profile
¬ Multilib config based on GNU/ARM defaults
¬ 22 multilibs defined

¬ armrm, armv5tesoftfp, armv5tehard, armnofp, armv7nofp, armv7fpsoftfp, armv7fphard, armv6mnofp,
armv7mnofp, armv7emnofp, armv7emfpsoftfp, armv7emfphard, armv7emdpsoftfp, armv7emdphard,
armv8mbasenofp, armv8mmainnofp, armv8mmainfpsoftfp, armv8mmainfphard, armv8mmaindpsoftfp,
armv8mmaindphard

¬ Note these are custom defined, see include/tune-cortexrm.inc for ‘armrm’ definition

https://github.com/Xilinx/meta-xilinx/blob/rel-v2020.1/meta-xilinx-bsp/conf/machine/arm-rm-tc.conf

© Copyright 2020 Xilinx

Xilinx Bare Metal Multilibs

21

4See: https://github.com/Xilinx/meta-xilinx/blob/rel-v2020.1/meta-xilinx-
bsp/conf/machine/aarch64-tc.conf

4Aarch64
¬ Standard ARM (A profile) 64-bit instruction set
¬ Multilib config based on GNU/ARM defaults
¬ 2 multilibs defined

¬ cortexa72-cortexa53, cortexa72-cortexa53-ilp32

¬ This is a generic 64-bit arm configuration, but the requirement was that it run with acceptable
performance on both a72 and a53.

https://github.com/Xilinx/meta-xilinx/blob/rel-v2020.1/meta-xilinx-bsp/conf/machine/aarch64-tc.conf

© Copyright 2020 Xilinx

Xilinx Bare Metal Multilibs

22

4See: https://github.com/Xilinx/meta-xilinx/blob/rel-v2020.1/meta-xilinx-
bsp/conf/machine/microblaze-tc.conf

4Microblaze (microblaze-tc.conf)
¬ Common microblaze instruction set permutations
¬ Multilib config based on prior Xilinx defaults
¬ 48 multilibs defined

¬ microblaze, microblazele, microblazebs, microblazep, microblazem, microblazefpd, microblazemfpd,
microblazepm, microblazepfpd, microblazepmfpd, microblazebsp, microblazebsm, microblazebsfpd,
microblazebsmfpd, microblazebspm, microblazebspfpd, microblazebspmfpd, microblazele64, microblazelebs,
microblazelep, microblazelem, microblazelefpd, microblazelemfpd, microblazelepm, microblazelepfpd,
microblazelepmfpd, microblazelebsp, microblazelebsm, microblazelebsfpd, microblazelebsmfpd,
microblazelebspm, microblazelebspfpd, microblazelebspmfpd, microblazele64bs, microblazele64p,
microblazele64m, microblazele64fpd, microblazele64mfpd, microblazele64pm, microblazele64pfpd,
microblazele64pmfpd, microblazele64bsp, microblazele64bsm, microblazele64bsfpd, microblazele64bsmfpd,
microblazele64bspm, microblazele64bspfpd, microblazele64bspmfpd

¬ Microblaze is a configurable FPGA processor. It has numerous configurable traits and would
exceed even these 48 to do all permutations!

https://github.com/Xilinx/meta-xilinx/blob/rel-v2020.1/meta-xilinx-bsp/conf/machine/microblaze-tc.conf

© Copyright 2020 Xilinx

Xilinx Yocto Project Bare Metal Toolchain Configuration

23

4See: https://github.com/Xilinx/meta-xilinx/tree/rel-v2020.1/meta-xilinx-
standalone/recipes-devtools

4Binutils:
¬ Disable GOLD as LD, disable gprof, disable shared, enable-lto, enable-static, enable-multilib
¬ ARM: enable-interwork
¬ Microblaze: disable-initfini-array

https://github.com/Xilinx/meta-xilinx/tree/rel-v2020.1/meta-xilinx-standalone/recipes-devtools

© Copyright 2020 Xilinx

Xilinx Yocto Project Bare Metal Toolchain Configuration

24

4See: https://github.com/Xilinx/meta-xilinx/tree/rel-v2020.1/meta-xilinx-
standalone/recipes-devtools

4GCC:
¬ Disable-libstdcxx-pch, with-newlib, disable-threads, enable-plugins, with-gnu-as, disable-

libitm
¬ Aarch64: disable-multiarch, with-arch=armv8-a
¬ Arm: with-multilib-list={aprofile or rmprofile}
¬ Arm R/M: disable-tls, disable-decimal-float
¬ Microblaze: enable-target-optspace, without-long-double-128, disable-initfini-array,

disable-__cxa_atexit
¬ To emulate multilibs, need to symlink each individual multilib into a common area, etc…
¬ Hack to only build GCC once and then symlink multilib versons to the main

https://github.com/Xilinx/meta-xilinx/tree/rel-v2020.1/meta-xilinx-standalone/recipes-devtools

© Copyright 2020 Xilinx

Xilinx Yocto Project Bare Metal Toolchain Configuration

25

4See: https://github.com/Xilinx/meta-xilinx/tree/rel-v2020.1/meta-xilinx-
standalone/recipes-core

4Newlib/Libgloss:
¬ Xilinx baremetal implements device specific items using libxil, but we use libgloss to provide

the framework
¬ enable-newlib-io-c99-formats, enable-newlib-io-long-long, enable-newlib-io-float, enable-

newlib-io-long-double, disable-newlib-supplied-syscalls
¬ Libgloss didn’t understand multilib depends automatically for some reason

¬ DEPENDS_append = “ ${MLPREFIX}newlib”

https://github.com/Xilinx/meta-xilinx/tree/rel-v2020.1/meta-xilinx-standalone/recipes-core

© Copyright 2020 Xilinx

Lessons Learned

26

4The more multilibs, the longer the initial project parse time.
¬ Microblaze parse time is nearly an hour (48 multilibs)

¬ Development workaround, build for only one multilib!
¬ Mingw32 builds are sequential with the Linux version, using a shared sstate-cache

¬ These take roughly 15 minutes on the same machine for the mingw parts

Time Parse mlibs Build Step Ct-ng
time

Ct-ng
mlibs

84m 8m 48 Microblaze-tc for Linux 32m 18
46m 1m28s 17 Aarch32-tc for Linux 13m 3
26m 8s 2 Aarch64-tc for Linux 14m 2
51m 8s 22 Arm-rm-tc for Linux 10m 1

Intel Xeon Gold 6130 (32 thread) @ 2.10 GHz w/ 128 GB ram running Ubuntu 18.04

© Copyright 2020 Xilinx

Recommendations

27

4For a quick toolchain, firmware users, etc. Crosstools-ng is far easier.

4You can still use crosstool-ng with a common source base with the Yocto
Project, but configuration switches are different by default.

4Yocto Project makes the most sense if you need Cygwin, or toolchains that run
standalone with their own environments.

4Yocto Project MAY take more time, but will provide an easy way for common
source and configuration switches with Linux builds. May simplify defect
handling and propagation of fixes/features between Yocto Project systems and
baremetal.

© Copyright 2020 Xilinx

Thank You

