OP-TEE Using TrustZone to Protect Our Own Secrets

ELC Europe 2017, 23.10.2017

Marc Kleine-Budde <mkl@pengutronix.de>

Overview

- ARM architecture overview
- ARM TrustZone
- Trusted Execution Environment
- Open Portable Trusted Execution Environment

What is a TEE?

- Trusted Execution Environment
 - small OS-like environment
 - isolated from normal operating system (e.g. Linux) "rich OS"
- Allows Applications to execute, process, protect and store sensitive data
- Rich OS is often target of malware and attackers
- Design applications so that sensitive functions can be offloaded to the TEE as Trusted Applications.
- API standardized by GlobalPlatform
 - TEE internal APIs for Trusted Application
 - communication interfaces between rich OS Applications and Trusted Applications

Functionality

ARM architecture

ARM architecture with TrustZone

Normal world

Secure world

ARM architecture with TrustZone (cont'd)

- Provides a complete "virtual system" for secure computing
- Divide hardware and software into separate partitions ("worlds")
 - one is trusted ("secure world")
 - the other not ("Normal world")
- Limited and tightly defined ways to get from one world to the other
 ⇒ secure monitor

ARM TrustZone in detail

Normal world

Secure world

Source: http://genode.org/documentation/articles/trustzone

ARM TrustZone in detail (cont'd)

- Security Extensions to ARM processors
- Supported by
 - ARM1176
 - Cortex-A series (ARMv7-A, ARMv8-A)
 - ARMv8-M
- System-wide hardware isolation
 - SRAM
 - DRAM
 - CPU configuration registers
 - peripherals
- SoC design has impact on practical usefulness of security features

ARM TrustZone switching worlds

- Secure World entry
 - Hardware-controlled
 - automatic
 - partly configurable
 - By exception
 - Reset
 - CPU always starts secure
 - Secure Monitor Call
 - SMC #n instruction
 - analogous to Supervisor Call (SVC)
 - · always handled in Secure World
 - IRQ, FIQ, Data abort
 - configurable (by secure software)
- Non-Secure World entry
 - Software-controlled
 - Typically
 - set SCR.NS
 - return from execption

What is OP-TEE?

- Started as closed source implementation by some mobile, telco and chip vendors
- Since 2015 Open Source (BSD license), owned and maintained by Linaro
- In 2017 the TEE driver went mainline with v4.12
- Small and simple TEE
- Relies on rich OS to schedule TEE
- Based on ARM TrustZone to provide isolation of the TEE from the rich OS in hardware
- Runs on ~20 platforms
 - 32 bit: ARMv7-A
 - 64 bit: ARMv8-A

OP-TEE architecture

OP-TEE in detail

- The OP-TEE consists of three parts
- Normal World, User Mode
 - TEE client library
 - tee-supplicant
 - file system access
 - access to shared resources
- Normal World, Priviledged Mode
 - Linux kernel TEE subsystem
 - Linux kernel TEE device driver
- Secure world, Priviledged Mode
 - Trusted OS (optee_os)
- TEE contains public key
- Trusted Applications are singed and can be loaded from the Normal World into the TEE

OP-TEE - Trusted Boot ARMv7-A: i.MX6

For details on trusted boot see my talk from ELCE 2016.

OP-TEE - Boot sequence in ARMv7-A: i.MX6

Non-Secure world Secure world Reset **ROM-Code** load/check bootloader bootloader (barebox) load/check TEE kernel, DTB, initrd Return from exeption Kernel TÉE initialize and run initialize and run SMC #n TEE - Perform request

Return from exeption

secure service

secure service

Observations & What's Missing?

- Better SoC support
 - more SRAM
 - TrustZone support missing in some peripherals
- TrustZone: From my (limited) point of view:
 - The concept of moving peripherals into Secure World is "complicated" on todays SoCs.
 - Think about turning off the clock of the Secure World's I2C, PWM or Ethernet Controller.
- Support for existing private key storages
 - inside the Linux kernel
 - opengpg/ssh
 - TPM
- build system feels Android centric
- make use more use of DT
- convert config #ifdef to kconfig

Summary

- TEE Trusted Execution Environment
 - Set of APIs to split applications into normal and secure part
- Trust7one
 - Security extension for ARM processors to partition one SoC into Normal and Secure World
 - Practical usefulness depends on SoC design
- OP-TEE Open Platform TEE
 - Implements TEE on ARM using TrustZone

Q&A

@marckleinebudde

