Device tree and embedded Linux

Vitaly Bordug
Principal Engineer

montavista

What is the device tree?

* Just a data structure representing;:
— a tree, layered out system of nodes;
— only one parent allowed.

* Each node has following properties:
— each node has a name;
—node contains actual data, that 1s stored in a list of
«propertiesy.

* Source and binary of the deice tree

Origin of the device tree

* Inspired from OpenFirmware (OF)

* Addresses problems to determine HW configuration
— common stream: desktop, server and BIOS;
— embedded platforms specifics.

* Why it was needed

— devtree is clear, flexible and is a standard;
—was a due for ppc/powerpc merge.

From theory to implementation

* But we were doing good without that stuff... How?

— bd t (already history). Only parameters, no real
description.

— ARM mach_types. Indicates platforms, but not enough
flexibility to handle variants.

* Separating structure and code: the DTS (device tree source)
way

Pros and Cons

— Formal and clear HW description

— Multiplatform kernels now possible

— Less board-specific code, more efficient device-driver
binding

— Bigger kernel (in terms of footprint and overall size)

— Slower boot time

— Complex layers to enable devtree on new architectures

OF without real OF

* PPC32, u-boot and OF: first steps and questions
— where to place the dtb (device tree binary) ;
— Support older FW versions/implementations
*Add functionality
*Maintain backward compatibility
* Current state: how to do 1t right
— DTC (device tree compiler) dependancy removed

— DTS (device tree source) files for all supported boards are
maintained within kernel source

— U-boot mainline (from v1.1.3) supporting device tree
natively, with backward compatibility

What devicetree source looks like

¥, mpc832x_rdb.dts (~/kernel/linux-2.6/arch/powerpc/boot/dts) - GVII -

Qaiin [lpaska WHCTpyMeHThl CWHTakcuc bydepbl OkHo Copaska

Leaad be B &A@ 683 % a3
flemory {

device type = "memory";
reg = <0x00000000 0x04000000>;

O]

I

50C8323@= 0000000 {
#address-cells = <1>;
#s1z7e-cells = =1=;
device type = "soc";
compatible = "simple-bus";
ranges = <0x0 OxeQ00O000 Ox00100000>;
reg = <0xef000000 OxQ0000200=>;
bus- frequency = <0>;

wdtg200 {
device type = "watchdog";
compatible = "mpc83xx_wdt";
reg = <0x200 0x100>;

+

i2c@3000 {
#address-cells = <1>;
#size-cells = <=0=>;
cell-index = <0=;
compatible = "fsl-12c";
reg = <0x3000 0x100>;
interrupts = <14 0Ox8>;
interrupt-parent = <&ipics;
dfsrr;

I

serialf: serial@4so0 {
cell-index = <0>;
device type = "serial”;
compatible = "ns16550";
reg = <0x4500 0x100=>;
clock-frequency = =0=; sj
45,2-9 14%

Implementation issues and activities to mitigate

* Devicetree OF specification does not provide a clear
distinction between configuration options and h/w
capabilities

— Documentation revamp underway

— New mailing list — first place to ask.. Not only when
you're not sure. (devicetree-discuss@ozlabs.org)

* Multicore: model needs clear way for hypervisor to distribute
resources between cores

— Include devicetree source
— Current workaround: devicetree merge

What about other architectures ?

* Actively considered as an alternative for ARM mach-* mess
* We alreade have something to show...

* What is still todo though:

— Support for the U-Boot (take dtb and pass it over to the
kernel

— Kernel-side dtb support

— OF-like interrupt controllers support (get rid of static
mapping. Plenty of work :))

DTS applications: beyond Kernel

* Stepping outside initial goals and definitions
— ulmage and its limitations
— Use devicetree as a container to construct new ulmage

* New ulmage is already in mainline — what does it mean in
terms of support for existing products

— Full backward-compatibility

— Bunch of flexibility and functionality 1f 1t 1s needed

New ulmage: how the whole thing works

Image source file

mkimage

o~
image data files DTC

new composite image file

J

TARGET
B

Image tree source example

@awnn [lpaska WHcTpyMeHTbl CwuHTakcuc bydepsr OxkHo Cnopaska

@caasl s e B > @ s B8 B %
images {
kernel@l {
description = "Vanilla Linux kernel";
data = /incbiny/(". /vmLinux. bin.gz");
type = "kernel";
arch = "ppc";
os = "Linux";
compression = “gzip";

load = <QEOOOOO0=;
entry = <000R00000=;

hashgl {
algo = "crc32";
+
hashgz {
algo = "shal"[]
+
¥
fdtgl {
description = "Flattened Device Tree blob";
data = /fincbin/(". /target.dtb");
type = "flat dt";
arch = "ppc";
compression = "none";
hash@l {
algo = "crc32";
I
hash@gz {
algo = "shal";
b
+i

22,18-46

37%

Leveraging the New ulmage Implementation

* Maximizes flexibility in kernel and RFS combinations:
— single and multi-kernel are supported;

— allows for support of a single “multiplatform 1image” with
different DTBs.

* Not restricted to the kernel:

— 1mage tree source can store additional user-defined data -
extremely useful to store configurations;

— auto-update extended firmware feature was merged to the
mainline u-boot see doc/README.update

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

