
Transitioning from uclibc to
musl for embedded

development
Embedded Linux Conference 2015
Rich Felker, maintainer, musl libc

March 24, 2015



What is musl?
musl is a libc, an implementation of the user-space side of
the standard C/POSIX functions that are the foundation of

most systems.

musl is a general-purpose libc. Unlike uClibc, it's not
specific to the embedded domain.



History and Motivations
Based on work that begin in 2005, seeking an
alternative to glibc bloat with strong UTF-8 support.
uClibc was an emerging option, but lack of stable ABI
made it unattractive.
Project really launched 2010-2011.
Milestone 1.0 release in 2014.



Core Principles
Not all chosen from the outset, but evolved:

Simplicity as the core approach to size, performance,
security, and maintainability
Factoring for minimal code duplication
Ease of navigating and understanding code
Robustness/fail-safety
Not depending on fancy compiler/toolchain features
First-class status for UTF-8, non-ASCII characters



Motivations for switching
from uClibc to musl

Three major areas:

Technical advantages
Project health & development process
License



License
uClibc is LGPL. musl is under a permissive (MIT) license:
Copyright © 2005-2015 Rich Felker, et al.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

Permissive license means you can make static-linked
binaries without license-conformance concerns.



Project Health
Time-based releases every 1-2 months
Tracking current standards
Rapid turnaround for bug fixes
Responsive mailing list and IRC channel
Stable ABI



uClibc's declining health
Almost 3 years with no official releases
3 options for threads, all outdated & buggy
Numerous broken configurations
Major C99 and POSIX 2008 features missing
Buildroot considering switching away



Technical benefits of musl



Quantitatively
musl uClibc

Source code size ~48kloc ~230kloc
Library binaries ~500k ~500k
Minimal static binary 1.8k 7k
Minimal printf static binary 13k 70k
Minimal threaded static binary 6k 114k
Dynamic linking overhead 20k 40k
UTF-8 performance 4x glibc 2x glibc

(Sizes vary by arch; measured on x86.)



Fail-safety
musl does not introduce unnecessary failure cases.

Operations that can be performed in-place or in small
bounded space without resource allocation never fail.

After main() is entered, all failures are reportable. musl
will never abort() behind the program's back.

No lazy binding or lazy TLS allocation.



Advanced posix_spawn()
The posix_spawn function is like fork+execve in one.

Avoids all the dangers of vfork ( ).ewontfix.com/7/

musl's posix_spawn implementation uses CLONE_VM and
close-on-exec to synchronize with child's execve.

Compatible with NOMMU and optimal for low-memory
environments.

http://ewontfix.com/7/


Advanced threads
implementation

Lightweight - around 10-15k total.
Supports C11 and POSIX threads APIs.
Safe-to-use thread cancellation ( ).
Strong adherence to POSIX and C11 semantics.
Available on all supported archs.

ewontfix.com/2

http://ewontfix.com/2


iconv charset conversions
musl's iconv() supports most major legacy character

encodings, including legacy CJK & GB18030.

All in 128k of code & tables.



Important Differences



musl is not configurable
And that's a good thing.

For static linking, efficient factorization of object files gives
most of the same benefits as configurable features would,

but without the configuration burden on the user (you).

As a result, testing is practical and we don't have
continually breaking feature combinations.



musl supports fewer archs
But it's easy to port.



Supported by both uClibc and musl
i386, x86_64, ARM, PowerPC, MIPS, Microblaze, SuperH



Supported only by uClibc
Alpha, AVR32, Blackfin, c6x, Cris, HPPA, Itanium, m68k,

Nios, Sparc, Vax, Xtensa



Supported only by musl
AArch64, OpenRISC 1000

And hopefully (GSoC) RISC-V!



What's involved in a port?
12 mandatory asm files (~200 lines)
5 mandatory arch-def headers (~150 lines)
27 bits/ headers defining types/kernel interfaces
Small build-system glue
Optional optimized versions of bottleneck functions



musl doesn't use glibc
headers

uClibc uses (outdated, modified) copies of the glibc
headers and defines __GLIBC__ to “trick” applications.

musl has its own clean-room headers.

musl's headers do not depend on any kernel headers, but
may conflict with some uses of kernel headers.



musl is only one lib file
Threads, math, clock_gettime(), etc. are always

available without needing -lm, -lpthread, etc.

Even the dynamic linker is integrated.

Empty libm.a, libpthread.a, etc. are provided for
build-time compatibility (and conformance).

There is no libm.so, libpthread.so, etc.



musl behaves differently
In some ways.

But usually they're good, once you understand them.



Dynamic linking
Always RTLD_NOW behavior (no lazy binding).
Dynamic TLS is reserved at dlopen (no lazy allocation).
Loaded libraries are never unloaded (by dlclose).

As a result, most archs have zero lines of arch-specific
dynamic-linker code.



Threads
Default thread stack size is small (80k vs 2-8 MB).
Thread cancellation doesn't interact with exceptions.
Dynamic TLS is reserved at thread creation.



Locale and charset
Character encoding is always UTF-8 (even C locale).
Character properties are hard-coded to Unicode, not
locale-specific and not generated from glibc locales.
iconv supports different (mostly, more) charsets and
may behave differently.



Further misc. differences
Math functions don't set errno, only fenv flags.
DNS lookups are done in parallel.
Regex implementation has different/fewer extensions.



Toolchains & Distributions



Canonical toolchain is musl-
cross

https://bitbucket.org/GregorR/musl-cross

These are the patches intended for gcc upstream and will
eventually make it there.

Simple musl-targeted cross compiler build scripts are
included. Precompiled x86 binaries available.

https://bitbucket.org/GregorR/musl-cross


Buildroot supports musl
Well-known to uClibc users.
musl is an option on the toolchain menu.
Still labelled “experimental”.



musl-based distributions
Sabotage Linux - the original musl-based dist and patch-
source for packages that don't build against musl out-of-
the-box.

OpenWRT - supports musl-based builds; plans to switch
default to musl.

Alpine Linux - server- and security-oriented distribution
with binary packages for x86[_64] and ARM.

Many more - see the musl community wiki.



Thank you
http://www.musl-libc.org

, @musllibc @RichFelker

https://www.patreon.com/musl

http://www.musl-libc.org/
https://twitter.com/musllibc
https://twitter.com/RichFelker
https://www.patreon.com/musl

